Closed Loop On-Line Identification Based on Neural Networks in Adaptive Optimal Controller
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F02%3APU29163" target="_blank" >RIV/00216305:26220/02:PU29163 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Closed Loop On-Line Identification Based on Neural Networks in Adaptive Optimal Controller
Popis výsledku v původním jazyce
Last ten years, algorithms based on Neural Networks were used successfully for the pattern recognition, process control and system identification. Artificial Neural Networks applied this way have been strongly developing together with the classical control. It is mainly because of their self-learning property and wide-range of easy algorithm designs. Using Neural Networks for identification is well-known strategy where the process is observed usually through its input and output only. The real process iis often influenced by disturbances. In this case, the more identified transfer function is inaccurate the more as disturbance influences IO of the measured process. This paper shows a comparison between on-line identification (in the real time) based onNeural Networks and a classical identification implemented in adaptive optimal controller. The setting of the sampling period for the both identification methods is investigated.
Název v anglickém jazyce
Closed Loop On-Line Identification Based on Neural Networks in Adaptive Optimal Controller
Popis výsledku anglicky
Last ten years, algorithms based on Neural Networks were used successfully for the pattern recognition, process control and system identification. Artificial Neural Networks applied this way have been strongly developing together with the classical control. It is mainly because of their self-learning property and wide-range of easy algorithm designs. Using Neural Networks for identification is well-known strategy where the process is observed usually through its input and output only. The real process iis often influenced by disturbances. In this case, the more identified transfer function is inaccurate the more as disturbance influences IO of the measured process. This paper shows a comparison between on-line identification (in the real time) based onNeural Networks and a classical identification implemented in adaptive optimal controller. The setting of the sampling period for the both identification methods is investigated.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F01%2F1485" target="_blank" >GA102/01/1485: Prostředí pro vývoj, modelování a aplikaci heterogenních systémů</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2002
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings East West Fuzzy Colloquium 2002
ISBN
3-9808089-2-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
218-223
Název nakladatele
Rektor der Hochschule Zittau/Görlitz
Místo vydání
Zittau, Německo
Místo konání akce
Zittau
Datum konání akce
4. 9. 2002
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—