Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Retinal Nerve Fiber Layer Analysis via Markov Random Fields Texture Modelling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F10%3APU86943" target="_blank" >RIV/00216305:26220/10:PU86943 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Retinal Nerve Fiber Layer Analysis via Markov Random Fields Texture Modelling

  • Popis výsledku v původním jazyce

    The texture analysis of the retinal nerve fiber layer (RNFL) in colour fundus images is a promising tool for early glau-coma diagnosis. This paper describes model-based method for detection of changes in the RNFL. The method utilizes Gaussian Markov random fields (GMRF) and the least-square error (LSE) estimate for the local RNFL texture modelling. The model parameters are used as a texture fea-tures and non-linear classifier based on the Bayesian rule is used for classification of healthy and glaucomatous RNFL tissue. The proposed features are tested in the sense of clas-sification errors and also they are applied for segmentation of RNFL defects in high-resolution colour fundus-camera images. The results are also compared with the Optical Co-herenceTomography images regarded as a gold standard for our application due to the possibility of RNFL thickness measurement.

  • Název v anglickém jazyce

    Retinal Nerve Fiber Layer Analysis via Markov Random Fields Texture Modelling

  • Popis výsledku anglicky

    The texture analysis of the retinal nerve fiber layer (RNFL) in colour fundus images is a promising tool for early glau-coma diagnosis. This paper describes model-based method for detection of changes in the RNFL. The method utilizes Gaussian Markov random fields (GMRF) and the least-square error (LSE) estimate for the local RNFL texture modelling. The model parameters are used as a texture fea-tures and non-linear classifier based on the Bayesian rule is used for classification of healthy and glaucomatous RNFL tissue. The proposed features are tested in the sense of clas-sification errors and also they are applied for segmentation of RNFL defects in high-resolution colour fundus-camera images. The results are also compared with the Optical Co-herenceTomography images regarded as a gold standard for our application due to the possibility of RNFL thickness measurement.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0572" target="_blank" >1M0572: Data, algoritmy, rozhodování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    18th European Signal Processing Conference (EUSIPCO-2010)

  • ISBN

  • ISSN

    2076-1465

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

  • Název nakladatele

    EURASIP

  • Místo vydání

    Neuveden

  • Místo konání akce

    Aalborg

  • Datum konání akce

    24. 8. 2010

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku