Epilepsy diagnosis using probability density functions of EEG signals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F11%3APU93434" target="_blank" >RIV/00216305:26220/11:PU93434 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Epilepsy diagnosis using probability density functions of EEG signals
Popis výsledku v původním jazyce
In this paper, the equal frequency discretization (EFD) based probability density approach was proposed to be used in the diagnosis of epilepsy from electroencephalogram (EEG) signals. For this aim, EEG signals were decomposed by using the discrete wavelet discretization (DWT) method into subbands, the coefficients in each subband were discretized to several intervals by EFD method, and the probability density of each subband of each EEG segment was computed according to the number of coefficients in discrete intervals. Then, two probability density functions were defined by means of the curve fitting over the probability densities of the sets of both healthy subjects and epilepsy patients. EEG signals were classified by applying the mean square error (MSE) criterion to these functions. The result of the classification was evaluated by using the ROC analysis, which indicated 82.50% success in the diagnosis of epilepsy. As a result, the EFD based probability density approach may be considered as an alternative way to diagnose epilepsy disease on EEG signals.
Název v anglickém jazyce
Epilepsy diagnosis using probability density functions of EEG signals
Popis výsledku anglicky
In this paper, the equal frequency discretization (EFD) based probability density approach was proposed to be used in the diagnosis of epilepsy from electroencephalogram (EEG) signals. For this aim, EEG signals were decomposed by using the discrete wavelet discretization (DWT) method into subbands, the coefficients in each subband were discretized to several intervals by EFD method, and the probability density of each subband of each EEG segment was computed according to the number of coefficients in discrete intervals. Then, two probability density functions were defined by means of the curve fitting over the probability densities of the sets of both healthy subjects and epilepsy patients. EEG signals were classified by applying the mean square error (MSE) criterion to these functions. The result of the classification was evaluated by using the ROC analysis, which indicated 82.50% success in the diagnosis of epilepsy. As a result, the EFD based probability density approach may be considered as an alternative way to diagnose epilepsy disease on EEG signals.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of INISTA 2011
ISBN
978-1-61284-919-5
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
626-630
Název nakladatele
IEEE
Místo vydání
Istanbul
Místo konání akce
Instanbul
Datum konání akce
15. 6. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—