CLASSIFICATION OF DRIVER'S DROWSINESS FROM STEERING WHEEL MOTION UNDER REAL TRAFFIC CONDITIONS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F12%3APU99587" target="_blank" >RIV/00216305:26220/12:PU99587 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CLASSIFICATION OF DRIVER'S DROWSINESS FROM STEERING WHEEL MOTION UNDER REAL TRAFFIC CONDITIONS
Popis výsledku v původním jazyce
To develop a system for drivers drowsiness recognition is a challenging task in the modern car transportation. Many studies have promising results. Unfortunately most data is acquired in the laboratory conditions. Therefore proving drowsiness detection reliability and accuracy in real traffic is difficult. The analyzed data in this paper is acquired from the real traffic and hence it contains all uncertainty. An in-direct measurement from the vehicle CAN bus has been chosen for data acquisition in orderto not affect the driver. The data is preprocessed according to the assumptions about drivers behavior and transformed to the frequency domain by means of the orthogonal transform (STFT, CWT and DWT). Subsequently, in the frequency domain, more than 70000 features are generated. By means of the filter feature selection, 10 best features are chosen for a prediction. Finally, 1-NN model is used for prediction accuracy estimation.
Název v anglickém jazyce
CLASSIFICATION OF DRIVER'S DROWSINESS FROM STEERING WHEEL MOTION UNDER REAL TRAFFIC CONDITIONS
Popis výsledku anglicky
To develop a system for drivers drowsiness recognition is a challenging task in the modern car transportation. Many studies have promising results. Unfortunately most data is acquired in the laboratory conditions. Therefore proving drowsiness detection reliability and accuracy in real traffic is difficult. The analyzed data in this paper is acquired from the real traffic and hence it contains all uncertainty. An in-direct measurement from the vehicle CAN bus has been chosen for data acquisition in orderto not affect the driver. The data is preprocessed according to the assumptions about drivers behavior and transformed to the frequency domain by means of the orthogonal transform (STFT, CWT and DWT). Subsequently, in the frequency domain, more than 70000 features are generated. By means of the filter feature selection, 10 best features are chosen for a prediction. Finally, 1-NN model is used for prediction accuracy estimation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F09%2F1897" target="_blank" >GA102/09/1897: Bezpečnost automobilové dopravy - BAD</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
MENDEL 2012, 18th International Conference on Soft Computing
ISBN
978-80-214-4540-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
428-433
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Brno University of Technology
Datum konání akce
27. 6. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—