Steering wheel motion analysis for detection of the driver's drowsiness
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F11%3APU95748" target="_blank" >RIV/00216305:26220/11:PU95748 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Steering wheel motion analysis for detection of the driver's drowsiness
Popis výsledku v původním jazyce
Reliable system for driver's drowsiness recognition is the aim of many studies. Unfortunately, majority of researchers work with data acquired in laboratory with ideal or simulated conditions. Therefore it is difficult to implement their results to realvehicle and prove its reliability and accuracy. The analyzed data in this paper is acquired from real traffic and therefore it contains all uncertainty partially modeled in laboratory. For data acquisition has been chosen in-direct measurement from vehicle CAN bus in order to not affect the driver. All data are preprocessed according to assumptions about driver's behavior and transformed to frequency domain by means of orthogonal transform (STFT, CWT and DWT). Subsequently, data is analyzed by data mining methods including features extraction and filter feature selection. The performance of the features is measured by the area under the receiver operating characteristic.
Název v anglickém jazyce
Steering wheel motion analysis for detection of the driver's drowsiness
Popis výsledku anglicky
Reliable system for driver's drowsiness recognition is the aim of many studies. Unfortunately, majority of researchers work with data acquired in laboratory with ideal or simulated conditions. Therefore it is difficult to implement their results to realvehicle and prove its reliability and accuracy. The analyzed data in this paper is acquired from real traffic and therefore it contains all uncertainty partially modeled in laboratory. For data acquisition has been chosen in-direct measurement from vehicle CAN bus in order to not affect the driver. All data are preprocessed according to assumptions about driver's behavior and transformed to frequency domain by means of orthogonal transform (STFT, CWT and DWT). Subsequently, data is analyzed by data mining methods including features extraction and filter feature selection. The performance of the features is measured by the area under the receiver operating characteristic.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F09%2F1897" target="_blank" >GA102/09/1897: Bezpečnost automobilové dopravy - BAD</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mathematical Models and Methods in Modern Science
ISBN
978-1-61804-055-8
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
256-261
Název nakladatele
WSEAS Press
Místo vydání
Puerto de la Cruz, Tenerife, Spain
Místo konání akce
Puerto de la Cruz, Tenerife, Španělsko
Datum konání akce
10. 12. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—