On Image Segmentation Techniques for Driver Inattention Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F11%3APU94504" target="_blank" >RIV/00216305:26220/11:PU94504 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Image Segmentation Techniques for Driver Inattention Systems
Popis výsledku v původním jazyce
Visual systems for automatic monitoring of driver vigilance usually have to address two main problems. First of all, they have to acquire and process image sequence so that fatigue features can be simply extracted. Secondly, visual systems have to analyse a set of acquired features and subsequently recognize dangerous behaviour such as driver inattention or sleepiness. This paper is focused particularly on segmentation methods used for reliable eyes tracking, because of eyes features are probably most significant features for determining of a driver fatigue. Fundamentals segmentation methods as simple colour segmentation or Hough transform as well as more complex methods as Haar-like features or symmetries detection are introduced in the paper. Several of the most frequently used fatigue features are listed and described at the end of the paper. All the presented methods were tested and verified on both laboratory and real sets of images.
Název v anglickém jazyce
On Image Segmentation Techniques for Driver Inattention Systems
Popis výsledku anglicky
Visual systems for automatic monitoring of driver vigilance usually have to address two main problems. First of all, they have to acquire and process image sequence so that fatigue features can be simply extracted. Secondly, visual systems have to analyse a set of acquired features and subsequently recognize dangerous behaviour such as driver inattention or sleepiness. This paper is focused particularly on segmentation methods used for reliable eyes tracking, because of eyes features are probably most significant features for determining of a driver fatigue. Fundamentals segmentation methods as simple colour segmentation or Hough transform as well as more complex methods as Haar-like features or symmetries detection are introduced in the paper. Several of the most frequently used fatigue features are listed and described at the end of the paper. All the presented methods were tested and verified on both laboratory and real sets of images.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JB - Senzory, čidla, měření a regulace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F09%2F1897" target="_blank" >GA102/09/1897: Bezpečnost automobilové dopravy - BAD</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The Proceedings of the 17th International Conference on Soft Computing
ISBN
978-80-214-4120-0
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1-6
Název nakladatele
Institute of Automation and Computer Science
Místo vydání
Brno, Czech Republic
Místo konání akce
Brno University of Technology
Datum konání akce
15. 6. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—