Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-GPU Implementation of k-Nearest Neighbor Algorithm

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F14%3APU108815" target="_blank" >RIV/00216305:26220/14:PU108815 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/7296368" target="_blank" >https://ieeexplore.ieee.org/document/7296368</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TSP.2015.7296368" target="_blank" >10.1109/TSP.2015.7296368</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-GPU Implementation of k-Nearest Neighbor Algorithm

  • Popis výsledku v původním jazyce

    Using modern Graphic Processing Units (Gills) becomes very useful for computing complex and time consuming processes. CPUs provide high performance computation capabilities with a good price. This paper deals with a multi-GPU OpenCL implementation of k-Nearest Neighbor (k-NN) algorithm. The proposed OpenCL algorithm achieves acceleration up to 750x in comparison with a single thread CPU version. The common k-NN was modified to be faster when the lower number of k neighbors is set. The performance of algorithm was verified with two GPUs dual-core NVIDIA GeForce GTX 690 and CPU Intel Core i7 3770 with 4.1 GHz frequency. The results of speed up were measured for one GPU, two GPUs, three and four GPUs. We performed several tests with data sets containing up to 4 million elements with various number of attributes.

  • Název v anglickém jazyce

    Multi-GPU Implementation of k-Nearest Neighbor Algorithm

  • Popis výsledku anglicky

    Using modern Graphic Processing Units (Gills) becomes very useful for computing complex and time consuming processes. CPUs provide high performance computation capabilities with a good price. This paper deals with a multi-GPU OpenCL implementation of k-Nearest Neighbor (k-NN) algorithm. The proposed OpenCL algorithm achieves acceleration up to 750x in comparison with a single thread CPU version. The common k-NN was modified to be faster when the lower number of k neighbors is set. The performance of algorithm was verified with two GPUs dual-core NVIDIA GeForce GTX 690 and CPU Intel Core i7 3770 with 4.1 GHz frequency. The results of speed up were measured for one GPU, two GPUs, three and four GPUs. We performed several tests with data sets containing up to 4 million elements with various number of attributes.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/FR-TI4%2F151" target="_blank" >FR-TI4/151: Výzkum a vývoj technologie pro detekci emocí v nestrukturovaných datech</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 38th International Conference on Telecommunication and Signal Processing

  • ISBN

    978-1-4799-8497-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    764-767

  • Název nakladatele

    Neuveden

  • Místo vydání

    Berlin, Germany

  • Místo konání akce

    Berlín

  • Datum konání akce

    1. 7. 2014

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000375231000259