Multi– GPU Implementation of Machine Learning Algorithm using CUDA and OpenCL
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F01962001%3A_____%2F16%3AN0000002" target="_blank" >RIV/01962001:_____/16:N0000002 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26220/16:PU119308
Výsledek na webu
<a href="http://ijates.org/index.php/ijates/article/view/142" target="_blank" >http://ijates.org/index.php/ijates/article/view/142</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/http://dx.doi.org/10.11601/ijates.v5i2.142" target="_blank" >http://dx.doi.org/10.11601/ijates.v5i2.142</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi– GPU Implementation of Machine Learning Algorithm using CUDA and OpenCL
Popis výsledku v původním jazyce
Using modern Graphic Processing Units (GPUs) becomes very useful for computing complex and time consuming processes. GPUs provide high–performance computation capabilities with a good price. This paper deals with a multi–GPU OpenCL and CUDA implementations of k–Nearest Neighbor (k– NN) algorithm. This work compares performances of OpenCL and CUDA implementations where each of them is suitable for different number of used attributes. The proposed CUDA algorithm achieves acceleration up to 880x in comparison with a single thread CPU version. The common k-NN was modified to be faster when the lower number of k neighbors is set. The performance of algorithm was verified with two GPUs dual-core NVIDIA GeForce GTX 690 and CPU Intel Core i7 3770 with 4.1 GHz frequency. The results of speed up were measured for one GPU, two GPUs, three and four GPUs. We performed several tests with data sets containing up to 4 million elements with various number of attributes.
Název v anglickém jazyce
Multi– GPU Implementation of Machine Learning Algorithm using CUDA and OpenCL
Popis výsledku anglicky
Using modern Graphic Processing Units (GPUs) becomes very useful for computing complex and time consuming processes. GPUs provide high–performance computation capabilities with a good price. This paper deals with a multi–GPU OpenCL and CUDA implementations of k–Nearest Neighbor (k– NN) algorithm. This work compares performances of OpenCL and CUDA implementations where each of them is suitable for different number of used attributes. The proposed CUDA algorithm achieves acceleration up to 880x in comparison with a single thread CPU version. The common k-NN was modified to be faster when the lower number of k neighbors is set. The performance of algorithm was verified with two GPUs dual-core NVIDIA GeForce GTX 690 and CPU Intel Core i7 3770 with 4.1 GHz frequency. The results of speed up were measured for one GPU, two GPUs, three and four GPUs. We performed several tests with data sets containing up to 4 million elements with various number of attributes.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/TH01010277" target="_blank" >TH01010277: BriskMiner - Efektivní nástroj pro pokročilou analytiku podnikových procesů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems
ISSN
1805-5443
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
7
Strana od-do
101-107
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—