The visualization of large graphs accelerated by the parallel nearest neighbors algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099107" target="_blank" >RIV/61989100:27240/16:86099107 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/16:86099107
Výsledek na webu
<a href="http://dx.doi.org/10.1109/BigMM.2016.73" target="_blank" >http://dx.doi.org/10.1109/BigMM.2016.73</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/BigMM.2016.73" target="_blank" >10.1109/BigMM.2016.73</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The visualization of large graphs accelerated by the parallel nearest neighbors algorithm
Popis výsledku v původním jazyce
The search of k-nearest neighbors (K-NN) is a very common task. The K-NN is utilized in many algorithms and scientific areas like clustering, classification, machine learning, N-body simulation, triangulation, image processing and/or video processing. However, the naive implementation of the K-NN is very slow. There are many novel algorithms for the K-NN search, but they are usually based on the hierarchical clustering. The parallelization of those algorithms is a little bit tricky task. This paper primarily presents a novel parallel method for searching the k-nearest neighbors. An appropriate clustering of a sparse space based on the regular grid and the parallel search of the K-NN using the precomputed clusters are introduced. The whole method is designed for the parallel GPU computation and it is implemented on the CUDA architecture. The presented K-NN is utilized to speed up a force-directed graph layout algorithm, which can visually demonstrate the suitability of found neighbors, because they affect the layout quality. The graphs are widely used in social network analysis, computer networks or large information systems like photographic databases or multimedia databases to visualize relationships between elements. The achieved results and performance tests are presented as well. (C) 2016 IEEE.
Název v anglickém jazyce
The visualization of large graphs accelerated by the parallel nearest neighbors algorithm
Popis výsledku anglicky
The search of k-nearest neighbors (K-NN) is a very common task. The K-NN is utilized in many algorithms and scientific areas like clustering, classification, machine learning, N-body simulation, triangulation, image processing and/or video processing. However, the naive implementation of the K-NN is very slow. There are many novel algorithms for the K-NN search, but they are usually based on the hierarchical clustering. The parallelization of those algorithms is a little bit tricky task. This paper primarily presents a novel parallel method for searching the k-nearest neighbors. An appropriate clustering of a sparse space based on the regular grid and the parallel search of the K-NN using the precomputed clusters are introduced. The whole method is designed for the parallel GPU computation and it is implemented on the CUDA architecture. The presented K-NN is utilized to speed up a force-directed graph layout algorithm, which can visually demonstrate the suitability of found neighbors, because they affect the layout quality. The graphs are widely used in social network analysis, computer networks or large information systems like photographic databases or multimedia databases to visualize relationships between elements. The achieved results and performance tests are presented as well. (C) 2016 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The Second IEEE International Conference on Multimedia Big Data : April 20-22, 2015, Taipei, Taiwan
ISBN
978-1-5090-2178-9
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
9-16
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Tchaj-pej
Datum konání akce
20. 4. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000389610000002