Acoustic Attack on Keyboard Using Spectrogram and Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F14%3APU109598" target="_blank" >RIV/00216305:26220/14:PU109598 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7296341&tag=1" target="_blank" >http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7296341&tag=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2015.7296341" target="_blank" >10.1109/TSP.2015.7296341</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Acoustic Attack on Keyboard Using Spectrogram and Neural Network
Popis výsledku v původním jazyce
Acoustic side channel belongs to one of the oldest side channel and currently, the acoustic attacks are focused on computer keyboards, automated teller machine and internal computer components. Different methods are used for a classification of acoustic traces measured. It primary depends on the fact if the attacker processes the measured data in time or frequency domain. These two approaches use mostly neural networks connected to dictionary using hidden Markov models for an improvement of classification results. We decided for a compromise between the time and frequency domains and we process acoustic trace measured in the time-frequency domain by using a spectrogram. We use the spectrogram as an input of a typical two-layer neural network with the back propagation learning algorithm. This approach is based on a simple algorithm and does not use any other tool to improve classification results. We used widely available laptop with an integrated microphone placed in an office to analyze the potential repeatability and feasibility of the proposed method.
Název v anglickém jazyce
Acoustic Attack on Keyboard Using Spectrogram and Neural Network
Popis výsledku anglicky
Acoustic side channel belongs to one of the oldest side channel and currently, the acoustic attacks are focused on computer keyboards, automated teller machine and internal computer components. Different methods are used for a classification of acoustic traces measured. It primary depends on the fact if the attacker processes the measured data in time or frequency domain. These two approaches use mostly neural networks connected to dictionary using hidden Markov models for an improvement of classification results. We decided for a compromise between the time and frequency domains and we process acoustic trace measured in the time-frequency domain by using a spectrogram. We use the spectrogram as an input of a typical two-layer neural network with the back propagation learning algorithm. This approach is based on a simple algorithm and does not use any other tool to improve classification results. We used widely available laptop with an integrated microphone placed in an office to analyze the potential repeatability and feasibility of the proposed method.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/FR-TI4%2F647" target="_blank" >FR-TI4/647: *Integrační server s kryptografickým zabezpečením</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 38th International Conference on Telecommunication and Signal Processing
ISBN
9781479984978
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
637-641
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Berlín
Datum konání akce
1. 7. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—