Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Linear acoustic echo cancellation using deep neural networks and convex reconstruction of incomplete transfer function

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F17%3A00004534" target="_blank" >RIV/46747885:24220/17:00004534 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://asap.ite.tul.cz/wp-content/uploads/sites/3/2017/06/ECMSM2017.pdf" target="_blank" >https://asap.ite.tul.cz/wp-content/uploads/sites/3/2017/06/ECMSM2017.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ECMSM.2017.7945913" target="_blank" >10.1109/ECMSM.2017.7945913</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Linear acoustic echo cancellation using deep neural networks and convex reconstruction of incomplete transfer function

  • Popis výsledku v původním jazyce

    Linear acoustic path estimation for acoustic echo cancellation is difficult during periods where the near-end signal (speech) is active. In this paper, we assume that the impulse response is sparse. There are many algorithms that solve the problem of estimating sparse impulse response in the time domain. In this paper, we propose algorithms working in the time-frequency domain. In our approach, it is assumed that the respective transfer function can be estimated only for those frequencies where the near-end signal is not active. First, a deep neural network trained on mixed signals is used to detect the activity of the near-end signal. In frequencies where no activity is detected, the acoustic transfer function is estimated using conventional frequency domain least squares. This results in an incomplete transfer function (ITF) estimate. The completion is done through finding the sparsest representation of the ITF in the time domain. This can be done adaptively using the soft-threshold function, which is applied in the time domain. To achieve improved accuracy, oversampling can be used.

  • Název v anglickém jazyce

    Linear acoustic echo cancellation using deep neural networks and convex reconstruction of incomplete transfer function

  • Popis výsledku anglicky

    Linear acoustic path estimation for acoustic echo cancellation is difficult during periods where the near-end signal (speech) is active. In this paper, we assume that the impulse response is sparse. There are many algorithms that solve the problem of estimating sparse impulse response in the time domain. In this paper, we propose algorithms working in the time-frequency domain. In our approach, it is assumed that the respective transfer function can be estimated only for those frequencies where the near-end signal is not active. First, a deep neural network trained on mixed signals is used to detect the activity of the near-end signal. In frequencies where no activity is detected, the acoustic transfer function is estimated using conventional frequency domain least squares. This results in an incomplete transfer function (ITF) estimate. The completion is done through finding the sparsest representation of the ITF in the time domain. This can be done adaptively using the soft-threshold function, which is applied in the time domain. To achieve improved accuracy, oversampling can be used.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA14-11898S" target="_blank" >GA14-11898S: Zlepšování řečového signálu pomocí částečně slepých metod za použití pole mikrofonů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics, ECMSM 2017

  • ISBN

    978-1-5090-5582-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    1-6

  • Název nakladatele

    Institute of Electrical and Electronics Engineers Inc.

  • Místo vydání

    Donostia, San Sebastian, Spain

  • Místo konání akce

    Donostia, San Sebastian, Spain

  • Datum konání akce

    1. 1. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku