The art and pitfalls of simulatenously measured fMRI and EEG data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F14%3APU110156" target="_blank" >RIV/00216305:26220/14:PU110156 - isvavai.cz</a>
Výsledek na webu
<a href="https://ww4.aievolution.com/hbm1401/index.cfm?do=abs.viewAbs&abs=3095" target="_blank" >https://ww4.aievolution.com/hbm1401/index.cfm?do=abs.viewAbs&abs=3095</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The art and pitfalls of simulatenously measured fMRI and EEG data
Popis výsledku v původním jazyce
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are two most common techniques used in neuroscience research. Currently, there is a growing interest to analyze simultaneously measured data from both modalities. The main motivation is to achieve the best temporal (by EEG) and spatial (by fMRI) resolution for the analyzed data. Another benefit resides in a simultaneous observation of the scene with two independent modalities. However, typical data preprocessing pipelines forboth modalities have to be adjusted to specifics of simultaneous measurement, where acquisition of one modality influences another. Especially EEG data, which are mainly affected, contains strong artifacts. Apart from the techniques for artifacts suppression and other preprocessing steps a several approaches for data analysis will be shown on datasets of patients or healthy controls.
Název v anglickém jazyce
The art and pitfalls of simulatenously measured fMRI and EEG data
Popis výsledku anglicky
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are two most common techniques used in neuroscience research. Currently, there is a growing interest to analyze simultaneously measured data from both modalities. The main motivation is to achieve the best temporal (by EEG) and spatial (by fMRI) resolution for the analyzed data. Another benefit resides in a simultaneous observation of the scene with two independent modalities. However, typical data preprocessing pipelines forboth modalities have to be adjusted to specifics of simultaneous measurement, where acquisition of one modality influences another. Especially EEG data, which are mainly affected, contains strong artifacts. Apart from the techniques for artifacts suppression and other preprocessing steps a several approaches for data analysis will be shown on datasets of patients or healthy controls.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů