Rapid Channel Assignment for Intelligent Indoor Scenarios
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F14%3APU110395" target="_blank" >RIV/00216305:26220/14:PU110395 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rapid Channel Assignment for Intelligent Indoor Scenarios
Popis výsledku v původním jazyce
Deploying new wireless systems is very difficult in the current system of frequency spectrum assignments. The most prospective spectrum bands are fixed allocated for specific services and these bands are controlled by national telecommunication (governmental) organizations. Measurements of the frequency spectrum background show that a huge underutilization of the frequency spectrum exists. Overall effectiveness of spectrum utilization is widely discussed in the context of cognitive radio and dynamic spectrum allocation. An autonomous and intelligent system should improve spectrum sharing capabilities by detecting current, licensed users – primary users with established connections in unused spectrum bands for cognitive radio – and secondary users. In this paper, a machine learning algorithm is used and channels in particular bands are scored according to a weight function. Real measured data are used as frequency spectrum background. This system should decrease interference in communication channels efficiently and increase data throughput with minimal costs. A further significant reduction of radiation power should be obtained by spectrum efficient communication. Smart buildings represent a great opportunity for this type of cognitive system.
Název v anglickém jazyce
Rapid Channel Assignment for Intelligent Indoor Scenarios
Popis výsledku anglicky
Deploying new wireless systems is very difficult in the current system of frequency spectrum assignments. The most prospective spectrum bands are fixed allocated for specific services and these bands are controlled by national telecommunication (governmental) organizations. Measurements of the frequency spectrum background show that a huge underutilization of the frequency spectrum exists. Overall effectiveness of spectrum utilization is widely discussed in the context of cognitive radio and dynamic spectrum allocation. An autonomous and intelligent system should improve spectrum sharing capabilities by detecting current, licensed users – primary users with established connections in unused spectrum bands for cognitive radio – and secondary users. In this paper, a machine learning algorithm is used and channels in particular bands are scored according to a weight function. Real measured data are used as frequency spectrum background. This system should decrease interference in communication channels efficiently and increase data throughput with minimal costs. A further significant reduction of radiation power should be obtained by spectrum efficient communication. Smart buildings represent a great opportunity for this type of cognitive system.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/ED2.1.00%2F03.0072" target="_blank" >ED2.1.00/03.0072: Centrum senzorických, informačních a komunikačních systémů (SIX)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 8th European Conference on Antennas and Propagation (EuCAP 2014)
ISBN
978-88-907018-4-9
ISSN
—
e-ISSN
—
Počet stran výsledku
3
Strana od-do
907-910
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
The Hague
Datum konání akce
6. 4. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000361548800205