Multiparametric Biological Tissue Analysis: A Survey of Image Processing Tools
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F14%3APU110572" target="_blank" >RIV/00216305:26220/14:PU110572 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiparametric Biological Tissue Analysis: A Survey of Image Processing Tools
Popis výsledku v původním jazyce
Using magnetic resonance tomography to scan biological tissues is currently a very dynamic approach. Based on various image parameters, the method enables us to analyze tissue properties, recognize healthy and pathological tissues, and diagnose the disease or indicate its progression. These activities are then necessarily accompanied by the processing of the acquired images. The paper introduces a comparison of statistical tools for the trainable segmentation of multiparametric data obtained through magnetic resonance tomography. In this context, the author briefly compares various available tools (Weka, Slicer3D, and RapidMiner) in view of the input data training and testing, applicability of the classification models, and ability of the input/output data to be extended with other systems for further processing. The paper also describes as a multiparametric task the segmentation of a brain tumor performed with real MR data. The source of the data consists in T1 and T2-weighted images. The proposed segmentation method is carried out within the following phases: data resampling; spatial data coregistration; definition of the training points; training of the SVM classification model; testing of the model and interpretation of the classification results.
Název v anglickém jazyce
Multiparametric Biological Tissue Analysis: A Survey of Image Processing Tools
Popis výsledku anglicky
Using magnetic resonance tomography to scan biological tissues is currently a very dynamic approach. Based on various image parameters, the method enables us to analyze tissue properties, recognize healthy and pathological tissues, and diagnose the disease or indicate its progression. These activities are then necessarily accompanied by the processing of the acquired images. The paper introduces a comparison of statistical tools for the trainable segmentation of multiparametric data obtained through magnetic resonance tomography. In this context, the author briefly compares various available tools (Weka, Slicer3D, and RapidMiner) in view of the input data training and testing, applicability of the classification models, and ability of the input/output data to be extended with other systems for further processing. The paper also describes as a multiparametric task the segmentation of a brain tumor performed with real MR data. The source of the data consists in T1 and T2-weighted images. The proposed segmentation method is carried out within the following phases: data resampling; spatial data coregistration; definition of the training points; training of the SVM classification model; testing of the model and interpretation of the classification results.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of PIERS 2014 in Guangzhou
ISBN
978-1-934142-28-8
ISSN
1559-9450
e-ISSN
—
Počet stran výsledku
4
Strana od-do
1861-1864
Název nakladatele
Neuveden
Místo vydání
Guangzhou, Čína
Místo konání akce
Guangzhou
Datum konání akce
25. 8. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000393225900412