Soft-tissues Image Processing: Comparison of Traditional Segmentation Methods with 2D active Contour Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F12%3A00385188" target="_blank" >RIV/68081731:_____/12:00385188 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26220/12:PU99076
Výsledek na webu
<a href="http://dx.doi.org/10.2478/v10048-012-0023-8" target="_blank" >http://dx.doi.org/10.2478/v10048-012-0023-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/v10048-012-0023-8" target="_blank" >10.2478/v10048-012-0023-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Soft-tissues Image Processing: Comparison of Traditional Segmentation Methods with 2D active Contour Methods
Popis výsledku v původním jazyce
The paper deals with modern methods of image processing, especially image segmentation, classification and evaluation of parameters. It focuses primarily on processing medical images of soft tissues obtained by magnetic resonance tomography (MR). It is easy to describe edges of the sought objects using segmented images. The edges found can be useful for further processing of monitored object such as calculating the perimeter, surface and volume evaluation or even three-dimensional shape reconstruction.The proposed solutions can be used for the classification of healthy/unhealthy tissues in MR or other imaging. Application examples of the proposed segmentation methods are shown. Research in the area of image segmentation focuses on methods based on solving partial differential equations. This is a modern method for image processing, often called the active contour method. It is of great advantage in the segmentation of real images degraded by noise with fuzzy edges and transitions betw
Název v anglickém jazyce
Soft-tissues Image Processing: Comparison of Traditional Segmentation Methods with 2D active Contour Methods
Popis výsledku anglicky
The paper deals with modern methods of image processing, especially image segmentation, classification and evaluation of parameters. It focuses primarily on processing medical images of soft tissues obtained by magnetic resonance tomography (MR). It is easy to describe edges of the sought objects using segmented images. The edges found can be useful for further processing of monitored object such as calculating the perimeter, surface and volume evaluation or even three-dimensional shape reconstruction.The proposed solutions can be used for the classification of healthy/unhealthy tissues in MR or other imaging. Application examples of the proposed segmentation methods are shown. Research in the area of image segmentation focuses on methods based on solving partial differential equations. This is a modern method for image processing, often called the active contour method. It is of great advantage in the segmentation of real images degraded by noise with fuzzy edges and transitions betw
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Measurement Science Review
ISSN
1335-8871
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
9
Strana od-do
153-161
Kód UT WoS článku
000307943000006
EID výsledku v databázi Scopus
—