Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Processing of Magnetic Images of Adipose Tissues

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F13%3APU103344" target="_blank" >RIV/00216305:26220/13:PU103344 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Processing of Magnetic Images of Adipose Tissues

  • Popis výsledku v původním jazyce

    Sufficiently meaningful picture of tissue structure can be obtained by the correct processing of the image data. This can be done by using image analysis, which takes place in several steps: acquisition of data, image adjustment, segmentation, and image description. At first, digital images are obtained, in our case these are the images of soft tissue obtained with using magnetic resonance tomograph (MR). This device is mainly used to display human tissue in medicine. MR is one of the non-destructive methods, does not cause harmful radiation, whose main advantage is the high contrast in the imaging of soft tissues. The contrast of the resulting images can be changed by setting of the pulse sequence (Spin Echo and Inversion Recovery) timing parameters used to measure the monitored tissue. The data acquired by tomograph is necessary reconstruct by using Fourier Transform reconstruction from K-space in to the MAT file as complex data. The next step of image analysis is image improvement, usually by suppression of noise, histogram equalization and segmentation. Noise should be suppressed to improve results of image processing. Linear transform of histogram was adjusted using a median filter. This is an expansion of the range of brightness in order to cover the entire width of the available brightness. The last step of image processing is multiparametric segmentation. It is a process that divides the image to objects of different characteristic. The main methods include the use of edge detector to highlight certain edges. The last step of the analysis is a description of the image; it is a statistical description of segmented objects in an image with subsequent classification. The aim of this paper is to demonstrate the internal morphology of chicken thigh by using MR. All MR images were evaluated using programs Marevisi and Matlab.

  • Název v anglickém jazyce

    Processing of Magnetic Images of Adipose Tissues

  • Popis výsledku anglicky

    Sufficiently meaningful picture of tissue structure can be obtained by the correct processing of the image data. This can be done by using image analysis, which takes place in several steps: acquisition of data, image adjustment, segmentation, and image description. At first, digital images are obtained, in our case these are the images of soft tissue obtained with using magnetic resonance tomograph (MR). This device is mainly used to display human tissue in medicine. MR is one of the non-destructive methods, does not cause harmful radiation, whose main advantage is the high contrast in the imaging of soft tissues. The contrast of the resulting images can be changed by setting of the pulse sequence (Spin Echo and Inversion Recovery) timing parameters used to measure the monitored tissue. The data acquired by tomograph is necessary reconstruct by using Fourier Transform reconstruction from K-space in to the MAT file as complex data. The next step of image analysis is image improvement, usually by suppression of noise, histogram equalization and segmentation. Noise should be suppressed to improve results of image processing. Linear transform of histogram was adjusted using a median filter. This is an expansion of the range of brightness in order to cover the entire width of the available brightness. The last step of image processing is multiparametric segmentation. It is a process that divides the image to objects of different characteristic. The main methods include the use of edge detector to highlight certain edges. The last step of the analysis is a description of the image; it is a statistical description of segmented objects in an image with subsequent classification. The aim of this paper is to demonstrate the internal morphology of chicken thigh by using MR. All MR images were evaluated using programs Marevisi and Matlab.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JA - Elektronika a optoelektronika, elektrotechnika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    PIERS PROCEEDINGS Progress In Electromagnetics Research Symposium

  • ISBN

    978-1-934142-24-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    3

  • Strana od-do

    385-387

  • Název nakladatele

    The Electromagnetic Academy, USA

  • Místo vydání

    Taipei

  • Místo konání akce

    Taipei

  • Datum konání akce

    25. 3. 2013

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku