Automatic Segmentation of Multi-Contrast MRI Using Statistical Region Merging
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F14%3APU110262" target="_blank" >RIV/00216305:26220/14:PU110262 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081731:_____/14:00432483
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic Segmentation of Multi-Contrast MRI Using Statistical Region Merging
Popis výsledku v původním jazyce
Several methods have been developed for segmentation of MR images. Some of them are fully automated and some of them rely on an expert's assistance, such as determination of a starting point etc. The fully automated methods are usually based on prior knowledge of a given object and can be used only for particular problem. The purpose of the proposed method is a fully automatic segmentation for general MR images independent on the number of tissues present. The proposed method is based on Statistical Region Merging (SRM) algorithm developed by Richard Nock and Frank Nielsen in 2004. The suitable MR contrasts for this algorithm, as it was confirmed during the test phase, are T1, T2 and FLAIR images. The segmentation process divides to image into regions according the properties in the area, but it does not consider the unconnected areas. For this reason, the algorithm is repeated for created segments without a joint border condition. The algorithm was tested on 5000 axial images with resolution 256x256 pixels. In 2256 slices, the tumor was present. Since the proposed method is fully automatic and independent of image intensities, each image of the database can be considered as unique and independent of others. The Dice coefficient for tissue segmentation varies for particular tissues. The best average result was achieved for grey matter, where the dice coefficient reached value 0.84. The results show the suitability of SRM method for multi-contrast MRI segmentation.
Název v anglickém jazyce
Automatic Segmentation of Multi-Contrast MRI Using Statistical Region Merging
Popis výsledku anglicky
Several methods have been developed for segmentation of MR images. Some of them are fully automated and some of them rely on an expert's assistance, such as determination of a starting point etc. The fully automated methods are usually based on prior knowledge of a given object and can be used only for particular problem. The purpose of the proposed method is a fully automatic segmentation for general MR images independent on the number of tissues present. The proposed method is based on Statistical Region Merging (SRM) algorithm developed by Richard Nock and Frank Nielsen in 2004. The suitable MR contrasts for this algorithm, as it was confirmed during the test phase, are T1, T2 and FLAIR images. The segmentation process divides to image into regions according the properties in the area, but it does not consider the unconnected areas. For this reason, the algorithm is repeated for created segments without a joint border condition. The algorithm was tested on 5000 axial images with resolution 256x256 pixels. In 2256 slices, the tumor was present. Since the proposed method is fully automatic and independent of image intensities, each image of the database can be considered as unique and independent of others. The Dice coefficient for tissue segmentation varies for particular tissues. The best average result was achieved for grey matter, where the dice coefficient reached value 0.84. The results show the suitability of SRM method for multi-contrast MRI segmentation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
PIERS 2014 Guangzhou Proceedings
ISBN
978-1-934142-28-8
ISSN
1559-9450
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1865-1869
Název nakladatele
Neuveden
Místo vydání
Guangzhou
Místo konání akce
Guangzhou
Datum konání akce
25. 8. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000393225900413