Comparison of Profiling Power Analysis Attacks Using Templates and Multi-Layer Perceptron Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F14%3APU111090" target="_blank" >RIV/00216305:26220/14:PU111090 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of Profiling Power Analysis Attacks Using Templates and Multi-Layer Perceptron Network
Popis výsledku v původním jazyce
In recent years, the cryptographic community has explored new approaches of power analysis based on machine learning models such as Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) or Random Forest (RF). Realized experiments proved that the method based on MLP can provide almost 100% success rate after optimization. Nevertheless, this description of results is based on the first order success rate that is not enough satisfactory because this value can be deceiving. Moreover, the power analysis method based on MLP has not been compared with other well-known approaches such as template attacks or stochastic attacks yet. In this paper, we introduce the first fair comparison of power analysis attacks based on MLP and templates. The comparison isaccomplished by using the identical data set and number of interesting points in power traces. We follow the unified framework for implemented side-channel attacks therefore we use guessing entropy as a metric of comparison.
Název v anglickém jazyce
Comparison of Profiling Power Analysis Attacks Using Templates and Multi-Layer Perceptron Network
Popis výsledku anglicky
In recent years, the cryptographic community has explored new approaches of power analysis based on machine learning models such as Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) or Random Forest (RF). Realized experiments proved that the method based on MLP can provide almost 100% success rate after optimization. Nevertheless, this description of results is based on the first order success rate that is not enough satisfactory because this value can be deceiving. Moreover, the power analysis method based on MLP has not been compared with other well-known approaches such as template attacks or stochastic attacks yet. In this paper, we introduce the first fair comparison of power analysis attacks based on MLP and templates. The comparison isaccomplished by using the identical data set and number of interesting points in power traces. We follow the unified framework for implemented side-channel attacks therefore we use guessing entropy as a metric of comparison.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/FR-TI4%2F647" target="_blank" >FR-TI4/647: *Integrační server s kryptografickým zabezpečením</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 1st International Conference on Mathematical Methods & Computational Techniques in Science & Engineering
ISBN
978-1-61804-256-9
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
134-139
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Atény
Datum konání akce
28. 11. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—