Profiling Power Analysis Attack Based on Multi-Layer Perceptron Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F15%3APU115950" target="_blank" >RIV/00216305:26220/15:PU115950 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-15765-8_18" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-15765-8_18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-15765-8_18" target="_blank" >10.1007/978-3-319-15765-8_18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Profiling Power Analysis Attack Based on Multi-Layer Perceptron Network
Popis výsledku v původním jazyce
In 2013, an innovative method of power analysis was presented. Realized experiments proved that the proposed method based on Multi-Layer Perceptron (MLP) can provide almost 100 percent success rate. This description based on the first-order success rate is not appropriate enough. Moreover, the above mentioned works contain other lacks: the MLP has not been compared with other well-known attacks, an adversary uses too many points of power trace and a general description of the MLP method was not provided. In this paper, we eliminate these weaknesses by introducing the first fair comparison of power analysis attacks based on the MLP and templates. The comparison is accomplished by using the identical data sets, number of interesting points and guessing entropy as a metric. The first data set created contains the power traces of an unprotected AES implementation in order to classify the secret key stored. The second and third data sets were created independently from public available power traces corresponding to a masked AES implementation (DPA Contest v4). Secret offset is revealed depending on the number of interesting points and power traces in this experiment. Moreover, we create a general description of the MLP attack.
Název v anglickém jazyce
Profiling Power Analysis Attack Based on Multi-Layer Perceptron Network
Popis výsledku anglicky
In 2013, an innovative method of power analysis was presented. Realized experiments proved that the proposed method based on Multi-Layer Perceptron (MLP) can provide almost 100 percent success rate. This description based on the first-order success rate is not appropriate enough. Moreover, the above mentioned works contain other lacks: the MLP has not been compared with other well-known attacks, an adversary uses too many points of power trace and a general description of the MLP method was not provided. In this paper, we eliminate these weaknesses by introducing the first fair comparison of power analysis attacks based on the MLP and templates. The comparison is accomplished by using the identical data sets, number of interesting points and guessing entropy as a metric. The first data set created contains the power traces of an unprotected AES implementation in order to classify the secret key stored. The second and third data sets were created independently from public available power traces corresponding to a masked AES implementation (DPA Contest v4). Secret offset is revealed depending on the number of interesting points and power traces in this experiment. Moreover, we create a general description of the MLP attack.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Computational Problems in Science and Engineering
ISBN
978-3-319-15764-1
Počet stran výsledku
25
Strana od-do
1-25
Počet stran knihy
491
Název nakladatele
Springer International Publishing
Místo vydání
Switzerland 2015
Kód UT WoS kapitoly
—