Digital Ownership Tags Based on Biometric Features of Iris and Fingerprint for Content Protection and Ownership of Digital Images and Audio Signals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F15%3APU115090" target="_blank" >RIV/00216305:26220/15:PU115090 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11042-015-2931-8" target="_blank" >http://dx.doi.org/10.1007/s11042-015-2931-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11042-015-2931-8" target="_blank" >10.1007/s11042-015-2931-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Digital Ownership Tags Based on Biometric Features of Iris and Fingerprint for Content Protection and Ownership of Digital Images and Audio Signals
Popis výsledku v původním jazyce
Abstract—Glaucoma is a disease of the retina which is one of the most common causes of permanent blindness worldwide. This paper presents an automatic image processing based method for glaucoma diagnosis from the digital fundus image. In this paper wavelet feature extraction has been followed by optimized genetic feature selection combined with several learning algorithms and various parameter settings. Unlike the existing research works where the features are considered from the complete fundus or a sub image of the fundus, this work is based on feature extraction from the segmented and blood vessel removed optic disc to improve the accuracy of identification. The experimental results presented in this paper indicate that the wavelet features of the segmented optic disc image are clinically more significant in comparison to features of the whole or sub fundus image in the detection of glaucoma from fundus image. Accuracy of glaucoma identification achieved in this work is 94.7 % and a comparison with existing methods of glaucoma detection from fundus image indicates that the proposed approach has improved accuracy of classification.
Název v anglickém jazyce
Digital Ownership Tags Based on Biometric Features of Iris and Fingerprint for Content Protection and Ownership of Digital Images and Audio Signals
Popis výsledku anglicky
Abstract—Glaucoma is a disease of the retina which is one of the most common causes of permanent blindness worldwide. This paper presents an automatic image processing based method for glaucoma diagnosis from the digital fundus image. In this paper wavelet feature extraction has been followed by optimized genetic feature selection combined with several learning algorithms and various parameter settings. Unlike the existing research works where the features are considered from the complete fundus or a sub image of the fundus, this work is based on feature extraction from the segmented and blood vessel removed optic disc to improve the accuracy of identification. The experimental results presented in this paper indicate that the wavelet features of the segmented optic disc image are clinically more significant in comparison to features of the whole or sub fundus image in the detection of glaucoma from fundus image. Accuracy of glaucoma identification achieved in this work is 94.7 % and a comparison with existing methods of glaucoma detection from fundus image indicates that the proposed approach has improved accuracy of classification.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1401" target="_blank" >LO1401: Interdisciplinární výzkum bezdrátových technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MULTIMEDIA TOOLS AND APPLICATIONS
ISSN
1380-7501
e-ISSN
1573-7721
Svazek periodika
79
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
20-31
Kód UT WoS článku
000388121700063
EID výsledku v databázi Scopus
—