Acoustic Analysis of Sentences Complicated for Articulation in Patients with Parkinson's Disease
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU118915" target="_blank" >RIV/00216305:26220/16:PU118915 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Acoustic Analysis of Sentences Complicated for Articulation in Patients with Parkinson's Disease
Popis výsledku v původním jazyce
This paper deals with acoustic analysis of hypokinetic dysarthria. Hypokinetic dysarthria is a speech motor dysfunction that is present in approximately 90% of patients with Parkinson’s disease (PD). The work is mainly focused on parameterization techniques that can be used to diagnose or monitor this disease as well as estimate its progress. Acoustic analysis can be used to estimate a grade of hypokinetic dysarthria in fields of phonation, articulation, prosody and speech fluency. Regarding the parameterization, new features based on RASTA method were proposed. The analysis is based on parametrization of sentences complicated for articulation. Experimental dataset consists of 101 PD patients with different disease progress and 53 healthy controls. For the purpose of feature selection we employed mRMR (minimum Redundancy Maximum Relevance) method.
Název v anglickém jazyce
Acoustic Analysis of Sentences Complicated for Articulation in Patients with Parkinson's Disease
Popis výsledku anglicky
This paper deals with acoustic analysis of hypokinetic dysarthria. Hypokinetic dysarthria is a speech motor dysfunction that is present in approximately 90% of patients with Parkinson’s disease (PD). The work is mainly focused on parameterization techniques that can be used to diagnose or monitor this disease as well as estimate its progress. Acoustic analysis can be used to estimate a grade of hypokinetic dysarthria in fields of phonation, articulation, prosody and speech fluency. Regarding the parameterization, new features based on RASTA method were proposed. The analysis is based on parametrization of sentences complicated for articulation. Experimental dataset consists of 101 PD patients with different disease progress and 53 healthy controls. For the purpose of feature selection we employed mRMR (minimum Redundancy Maximum Relevance) method.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů