Automatic Traffic Sign Detection and Recognition Using Colour Segmentation and Shape Identification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU119856" target="_blank" >RIV/00216305:26220/16:PU119856 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1051/matecconf/20166817002" target="_blank" >http://dx.doi.org/10.1051/matecconf/20166817002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/matecconf/20166817002" target="_blank" >10.1051/matecconf/20166817002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic Traffic Sign Detection and Recognition Using Colour Segmentation and Shape Identification
Popis výsledku v původním jazyce
The paper describes a colour-based segmentation method of European traffic signs for detection in an image and a feature-based recognition method for categorizing them into given classes. At first, we have performed analysis of several well-known colour spaces as the RGB, HSV and YCbCr often used for segmentation purposes. The HSV colour space has been chosen as the most convenient for segmentation step and colour-based models of traffic signs representatives were created. Next, the fast radial symmetry (FRS) detection method and the Harris corner detector were used to recognize circles, triangles and squares as main geometrical shapes of the traffic signs. For these purposes a new gallery of real-life images containing traffic signs has been created and analysed. Overall efficiency of our recognition method is approx. 93 % on our gallery and is usable for real-time implementations.
Název v anglickém jazyce
Automatic Traffic Sign Detection and Recognition Using Colour Segmentation and Shape Identification
Popis výsledku anglicky
The paper describes a colour-based segmentation method of European traffic signs for detection in an image and a feature-based recognition method for categorizing them into given classes. At first, we have performed analysis of several well-known colour spaces as the RGB, HSV and YCbCr often used for segmentation purposes. The HSV colour space has been chosen as the most convenient for segmentation step and colour-based models of traffic signs representatives were created. Next, the fast radial symmetry (FRS) detection method and the Harris corner detector were used to recognize circles, triangles and squares as main geometrical shapes of the traffic signs. For these purposes a new gallery of real-life images containing traffic signs has been created and analysed. Overall efficiency of our recognition method is approx. 93 % on our gallery and is usable for real-time implementations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MATEC Web of Conferences
ISSN
2261-236X
e-ISSN
—
Svazek periodika
68
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
6
Strana od-do
1-6
Kód UT WoS článku
000387731800087
EID výsledku v databázi Scopus
2-s2.0-84982162311