Approximate Bayesian inference methods for mixture filtering with known model of switching
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU119990" target="_blank" >RIV/00216305:26220/16:PU119990 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7501157&isnumber=7501055" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7501157&isnumber=7501055</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CarpathianCC.2016.7501157" target="_blank" >10.1109/CarpathianCC.2016.7501157</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approximate Bayesian inference methods for mixture filtering with known model of switching
Popis výsledku v původním jazyce
Bayesian inference has proven itself to be a practically useful tool for many scientific fields. The exact Bayesian inference is, however, possible in only a narrow class of probabilistic models enjoying the conjugacy principle. It is rather typical that the principle does not hold, and therefore the approximate Bayesian inference methods are taken into account. The present paper compares some of these techniques on a mixture filtering problem. The methods are presented in a generic way, considering that the mixture components are members of the exponential family of probability distributions and that the Markov model of switching between the mixture components is known. A particular instance of the methods is given for a mixture of normal linear state space models, and experiments evaluating the estimation precision and computational time are performed.
Název v anglickém jazyce
Approximate Bayesian inference methods for mixture filtering with known model of switching
Popis výsledku anglicky
Bayesian inference has proven itself to be a practically useful tool for many scientific fields. The exact Bayesian inference is, however, possible in only a narrow class of probabilistic models enjoying the conjugacy principle. It is rather typical that the principle does not hold, and therefore the approximate Bayesian inference methods are taken into account. The present paper compares some of these techniques on a mixture filtering problem. The methods are presented in a generic way, considering that the mixture components are members of the exponential family of probability distributions and that the Markov model of switching between the mixture components is known. A particular instance of the methods is given for a mixture of normal linear state space models, and experiments evaluating the estimation precision and computational time are performed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 17th International Carpathian Control Conference, ICCC 2016
ISBN
978-1-4673-8606-7
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
545-551
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Tatranska Lomnica
Místo konání akce
Tatranská Lomnica
Datum konání akce
29. 5. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000389829000102