Discrimination of Normal and Abnormal Heart Sounds Using Probability Assessment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU120334" target="_blank" >RIV/00216305:26220/16:PU120334 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Discrimination of Normal and Abnormal Heart Sounds Using Probability Assessment
Popis výsledku v původním jazyce
Aims: According to the “2016 Physionet/CinC Challenge”, we propose an automated method identifying normal or abnormal phonocardiogram recordings. Method: Invalid data segments are detected (saturation, blank and noise tests) and excluded from further processing. The record is transformed into amplitude envelopes in five frequency bands. Systole duration and RR estimations are computed; 15-90 Hz amplitude envelope and systole/RR estimations are used for detection of the first and second heart sound (S1 and S2). Features from accumulated areas surrounding S1 and S2 as well as features from the whole recordings were extracted and used for training. During the training process, we collected probability and weight values of each feature in multiple ranges. For feature selection and optimization tasks, we developed C# application PROBAfind, able to generate the resultant Matlab code. Results: The method was trained with 3153 Physionet Challenge recordings (length 8-60 seconds; 6 databases). The results of the training set show the sensitivity, specificity and score of 0.93, 0.97 and 0.95, respectively. The method was evaluated on a hidden Challenge dataset with sensitivity and specificity of 0.87 and 0.83, respectively. These results led to an overall score of 0.85.
Název v anglickém jazyce
Discrimination of Normal and Abnormal Heart Sounds Using Probability Assessment
Popis výsledku anglicky
Aims: According to the “2016 Physionet/CinC Challenge”, we propose an automated method identifying normal or abnormal phonocardiogram recordings. Method: Invalid data segments are detected (saturation, blank and noise tests) and excluded from further processing. The record is transformed into amplitude envelopes in five frequency bands. Systole duration and RR estimations are computed; 15-90 Hz amplitude envelope and systole/RR estimations are used for detection of the first and second heart sound (S1 and S2). Features from accumulated areas surrounding S1 and S2 as well as features from the whole recordings were extracted and used for training. During the training process, we collected probability and weight values of each feature in multiple ranges. For feature selection and optimization tasks, we developed C# application PROBAfind, able to generate the resultant Matlab code. Results: The method was trained with 3153 Physionet Challenge recordings (length 8-60 seconds; 6 databases). The results of the training set show the sensitivity, specificity and score of 0.93, 0.97 and 0.95, respectively. The method was evaluated on a hidden Challenge dataset with sensitivity and specificity of 0.87 and 0.83, respectively. These results led to an overall score of 0.85.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
FA - Kardiovaskulární nemoci včetně kardiochirurgie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computing in Cardiology
ISBN
978-1-4799-4346-3
ISSN
0276-6574
e-ISSN
—
Počet stran výsledku
4
Strana od-do
1-1
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Vancouver
Datum konání akce
11. 9. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—