Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Discrimination of Normal and Abnormal Heart Sounds Using Probability Assessment

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU120334" target="_blank" >RIV/00216305:26220/16:PU120334 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Discrimination of Normal and Abnormal Heart Sounds Using Probability Assessment

  • Popis výsledku v původním jazyce

    Aims: According to the “2016 Physionet/CinC Challenge”, we propose an automated method identifying normal or abnormal phonocardiogram recordings. Method: Invalid data segments are detected (saturation, blank and noise tests) and excluded from further processing. The record is transformed into amplitude envelopes in five frequency bands. Systole duration and RR estimations are computed; 15-90 Hz amplitude envelope and systole/RR estimations are used for detection of the first and second heart sound (S1 and S2). Features from accumulated areas surrounding S1 and S2 as well as features from the whole recordings were extracted and used for training. During the training process, we collected probability and weight values of each feature in multiple ranges. For feature selection and optimization tasks, we developed C# application PROBAfind, able to generate the resultant Matlab code. Results: The method was trained with 3153 Physionet Challenge recordings (length 8-60 seconds; 6 databases). The results of the training set show the sensitivity, specificity and score of 0.93, 0.97 and 0.95, respectively. The method was evaluated on a hidden Challenge dataset with sensitivity and specificity of 0.87 and 0.83, respectively. These results led to an overall score of 0.85.

  • Název v anglickém jazyce

    Discrimination of Normal and Abnormal Heart Sounds Using Probability Assessment

  • Popis výsledku anglicky

    Aims: According to the “2016 Physionet/CinC Challenge”, we propose an automated method identifying normal or abnormal phonocardiogram recordings. Method: Invalid data segments are detected (saturation, blank and noise tests) and excluded from further processing. The record is transformed into amplitude envelopes in five frequency bands. Systole duration and RR estimations are computed; 15-90 Hz amplitude envelope and systole/RR estimations are used for detection of the first and second heart sound (S1 and S2). Features from accumulated areas surrounding S1 and S2 as well as features from the whole recordings were extracted and used for training. During the training process, we collected probability and weight values of each feature in multiple ranges. For feature selection and optimization tasks, we developed C# application PROBAfind, able to generate the resultant Matlab code. Results: The method was trained with 3153 Physionet Challenge recordings (length 8-60 seconds; 6 databases). The results of the training set show the sensitivity, specificity and score of 0.93, 0.97 and 0.95, respectively. The method was evaluated on a hidden Challenge dataset with sensitivity and specificity of 0.87 and 0.83, respectively. These results led to an overall score of 0.85.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    FA - Kardiovaskulární nemoci včetně kardiochirurgie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Computing in Cardiology

  • ISBN

    978-1-4799-4346-3

  • ISSN

    0276-6574

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    1-1

  • Název nakladatele

    Neuveden

  • Místo vydání

    Neuveden

  • Místo konání akce

    Vancouver

  • Datum konání akce

    11. 9. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku