Non odometry SLAM and Effect of Feature Space Parametrization on its Covariance Convergence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU120610" target="_blank" >RIV/00216305:26220/16:PU120610 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ifacol.2016.12.024" target="_blank" >http://dx.doi.org/10.1016/j.ifacol.2016.12.024</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2016.12.024" target="_blank" >10.1016/j.ifacol.2016.12.024</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Non odometry SLAM and Effect of Feature Space Parametrization on its Covariance Convergence
Popis výsledku v původním jazyce
This paper is aimed at non-odometry feature-based variant of SLAM (Simultaneous Localisation and Mapping) algorithm. The main focus has been given to processing of linearly constraint map landmarks observations. The observation model was simplified to linear and with this assumption is given derivation of three different variants of applicable SLAM algorithm – first variant which doesn’t take into consideration any map feature constraints, second variant which optimally process data under linear constraints assumption and third reduced variant which is designed to slightly suboptimal processing with significantly lower computational complexity. The performance of described methods was tested on synthetic data and results of simulations are presented at the end of this paper.
Název v anglickém jazyce
Non odometry SLAM and Effect of Feature Space Parametrization on its Covariance Convergence
Popis výsledku anglicky
This paper is aimed at non-odometry feature-based variant of SLAM (Simultaneous Localisation and Mapping) algorithm. The main focus has been given to processing of linearly constraint map landmarks observations. The observation model was simplified to linear and with this assumption is given derivation of three different variants of applicable SLAM algorithm – first variant which doesn’t take into consideration any map feature constraints, second variant which optimally process data under linear constraints assumption and third reduced variant which is designed to slightly suboptimal processing with significantly lower computational complexity. The performance of described methods was tested on synthetic data and results of simulations are presented at the end of this paper.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
14th IFAC Conference on Programmable Devices and Embedded Systems - PDeS 2016
ISBN
—
ISSN
2405-8963
e-ISSN
—
Počet stran výsledku
6
Strana od-do
357-362
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Brno/Lednice
Datum konání akce
5. 10. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000401255800024