Stability of the Zero Solution of Stochastic Differential Systems with Four-Dimensional Brownian Motion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU121848" target="_blank" >RIV/00216305:26220/16:PU121848 - isvavai.cz</a>
Výsledek na webu
<a href="http://mitav.unob.cz/data/MITAV%202016%20Proceedings.pdf" target="_blank" >http://mitav.unob.cz/data/MITAV%202016%20Proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stability of the Zero Solution of Stochastic Differential Systems with Four-Dimensional Brownian Motion
Popis výsledku v původním jazyce
The natural world is influenced by stochasticity therefore stochastic models are used to test various situations because only the stochastic model can approximate the real model. For example, the stochastic model is used in population, epidemic and genetic simulations in medicine and biology, for simulations in physical and technical sciences, for analysis in economy, financial mathematics, etc. The crucial characteristic of the stochastic model is its stability. Stability of stochastic differential equations (SDEs) has become a very popular theme of recent research in mathematics and its applications. This article studies the fundamental theory of the stochastic stability. There is investigated the stability of the solution of stochastic differential equations and systems of SDEs. The article begins with a summary of the stochastic theory. Then, there are inferred conditions for the asymptotic mean square stability of the zero solution of stochastic system with Brownian motion. There is used a Lyapunov function for proofs of main results. The method of Lyapunov functions for the analysis of qualitative behavior of SDEs provides some very useful information in the study of stability properties for concrete stochastic dynamical systems, conditions of existence the stationary solutions of SDEs and related problems. There are proved conditions for the stability (asymptotic, stochastic asymptotic). The results are illustrated by trivial examples for special types of matrices.
Název v anglickém jazyce
Stability of the Zero Solution of Stochastic Differential Systems with Four-Dimensional Brownian Motion
Popis výsledku anglicky
The natural world is influenced by stochasticity therefore stochastic models are used to test various situations because only the stochastic model can approximate the real model. For example, the stochastic model is used in population, epidemic and genetic simulations in medicine and biology, for simulations in physical and technical sciences, for analysis in economy, financial mathematics, etc. The crucial characteristic of the stochastic model is its stability. Stability of stochastic differential equations (SDEs) has become a very popular theme of recent research in mathematics and its applications. This article studies the fundamental theory of the stochastic stability. There is investigated the stability of the solution of stochastic differential equations and systems of SDEs. The article begins with a summary of the stochastic theory. Then, there are inferred conditions for the asymptotic mean square stability of the zero solution of stochastic system with Brownian motion. There is used a Lyapunov function for proofs of main results. The method of Lyapunov functions for the analysis of qualitative behavior of SDEs provides some very useful information in the study of stability properties for concrete stochastic dynamical systems, conditions of existence the stationary solutions of SDEs and related problems. There are proved conditions for the stability (asymptotic, stochastic asymptotic). The results are illustrated by trivial examples for special types of matrices.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mathematics, Information Technologies and Applied Sciences 2016 (post-conference proceedings of extended versions of selected papers )
ISBN
978-80-7231-400-3
ISSN
—
e-ISSN
—
Počet stran výsledku
111
Strana od-do
7-30
Název nakladatele
University of Defence
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
16. 6. 2016
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000391451200001