Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Stability of the Zero Solution of Stochastic Differential Systems with Four-Dimensional Brownian Motion

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU121848" target="_blank" >RIV/00216305:26220/16:PU121848 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://mitav.unob.cz/data/MITAV%202016%20Proceedings.pdf" target="_blank" >http://mitav.unob.cz/data/MITAV%202016%20Proceedings.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Stability of the Zero Solution of Stochastic Differential Systems with Four-Dimensional Brownian Motion

  • Popis výsledku v původním jazyce

    The natural world is influenced by stochasticity therefore stochastic models are used to test various situations because only the stochastic model can approximate the real model. For example, the stochastic model is used in population, epidemic and genetic simulations in medicine and biology, for simulations in physical and technical sciences, for analysis in economy, financial mathematics, etc. The crucial characteristic of the stochastic model is its stability. Stability of stochastic differential equations (SDEs) has become a very popular theme of recent research in mathematics and its applications. This article studies the fundamental theory of the stochastic stability. There is investigated the stability of the solution of stochastic differential equations and systems of SDEs. The article begins with a summary of the stochastic theory. Then, there are inferred conditions for the asymptotic mean square stability of the zero solution of stochastic system with Brownian motion. There is used a Lyapunov function for proofs of main results. The method of Lyapunov functions for the analysis of qualitative behavior of SDEs provides some very useful information in the study of stability properties for concrete stochastic dynamical systems, conditions of existence the stationary solutions of SDEs and related problems. There are proved conditions for the stability (asymptotic, stochastic asymptotic). The results are illustrated by trivial examples for special types of matrices.

  • Název v anglickém jazyce

    Stability of the Zero Solution of Stochastic Differential Systems with Four-Dimensional Brownian Motion

  • Popis výsledku anglicky

    The natural world is influenced by stochasticity therefore stochastic models are used to test various situations because only the stochastic model can approximate the real model. For example, the stochastic model is used in population, epidemic and genetic simulations in medicine and biology, for simulations in physical and technical sciences, for analysis in economy, financial mathematics, etc. The crucial characteristic of the stochastic model is its stability. Stability of stochastic differential equations (SDEs) has become a very popular theme of recent research in mathematics and its applications. This article studies the fundamental theory of the stochastic stability. There is investigated the stability of the solution of stochastic differential equations and systems of SDEs. The article begins with a summary of the stochastic theory. Then, there are inferred conditions for the asymptotic mean square stability of the zero solution of stochastic system with Brownian motion. There is used a Lyapunov function for proofs of main results. The method of Lyapunov functions for the analysis of qualitative behavior of SDEs provides some very useful information in the study of stability properties for concrete stochastic dynamical systems, conditions of existence the stationary solutions of SDEs and related problems. There are proved conditions for the stability (asymptotic, stochastic asymptotic). The results are illustrated by trivial examples for special types of matrices.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Mathematics, Information Technologies and Applied Sciences 2016 (post-conference proceedings of extended versions of selected papers )

  • ISBN

    978-80-7231-400-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    111

  • Strana od-do

    7-30

  • Název nakladatele

    University of Defence

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    16. 6. 2016

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    000391451200001