Identification of Hypokinetic Dysarthria Using Acoustic Analysis of Poem Recitation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU123582" target="_blank" >RIV/00216305:26220/17:PU123582 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/8076086/" target="_blank" >http://ieeexplore.ieee.org/document/8076086/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2017.8076086" target="_blank" >10.1109/TSP.2017.8076086</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Identification of Hypokinetic Dysarthria Using Acoustic Analysis of Poem Recitation
Popis výsledku v původním jazyce
Up to 90% of patients with Parkinson’s disease (PD) suffer from hypokinetic dysarthria (HD). In this work, we analysed the power of conventional speech features quantifying imprecise articulation, dysprosody, speech dysfluency and speech quality deterioration extracted from a specialized poem recitation task to discriminate dysarthric and healthy speech. For this purpose, 152 speakers (53 healthy speakers, 99 PD patients) were examined. Only mildly strong correlation between speech features and clinical status of the speakers was observed. In the case of univariate classification analysis, sensitivity of 62.63% (imprecise articulation), 61.62% (dysprosody), 71.72% (speech dysfluency) and 59.60% (speech quality deterioration) was achieved. Multivariate classification analysis improved the classification performance. Sensitivity of 83.42% using only two features describing imprecise articulation and speech quality deterioration in HD was achieved. We showed the promising potential of the selected speech features and especially the use of poem recitation task to quantify and identify HD in PD.
Název v anglickém jazyce
Identification of Hypokinetic Dysarthria Using Acoustic Analysis of Poem Recitation
Popis výsledku anglicky
Up to 90% of patients with Parkinson’s disease (PD) suffer from hypokinetic dysarthria (HD). In this work, we analysed the power of conventional speech features quantifying imprecise articulation, dysprosody, speech dysfluency and speech quality deterioration extracted from a specialized poem recitation task to discriminate dysarthric and healthy speech. For this purpose, 152 speakers (53 healthy speakers, 99 PD patients) were examined. Only mildly strong correlation between speech features and clinical status of the speakers was observed. In the case of univariate classification analysis, sensitivity of 62.63% (imprecise articulation), 61.62% (dysprosody), 71.72% (speech dysfluency) and 59.60% (speech quality deterioration) was achieved. Multivariate classification analysis improved the classification performance. Sensitivity of 83.42% using only two features describing imprecise articulation and speech quality deterioration in HD was achieved. We showed the promising potential of the selected speech features and especially the use of poem recitation task to quantify and identify HD in PD.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
40th Anniversary of International Conference on Telecommunications and Signal Processing (TSP)
ISBN
978-1-5090-3981-4
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
739-742
Název nakladatele
Neuveden
Místo vydání
Barcelona, Španělsko
Místo konání akce
Barcelona
Datum konání akce
5. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000425229000157