Two classes of asymptotically different positive solutions to advanced differential equations via two different fixed-point principles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU123880" target="_blank" >RIV/00216305:26220/17:PU123880 - isvavai.cz</a>
Výsledek na webu
<a href="http://onlinelibrary.wiley.com/doi/10.1002/mma.4064/full" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1002/mma.4064/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.4064" target="_blank" >10.1002/mma.4064</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Two classes of asymptotically different positive solutions to advanced differential equations via two different fixed-point principles
Popis výsledku v původním jazyce
The paper considers a system of advanced-type functional differential equations $$ dot{x}(t) = F(t,x^t) $$ where $F$ is a given functional, $x^t in C([0,r],{mathbb R}^n)$, $r>0$ and $x^t(theta)=x(t+theta)$, $theta in [0,r]$. Two different results on the existence of solutions, with coordinates bounded above and below by the coordinates of the given vector functions if $ttoinfty$, are proved using two different fixed-point principles. It is illustrated by examples that, applying both results simultaneously to the same equation yields two positive solutions asymptotically different for $ttoinfty$. The equation $$ dot{x}(t) = left(a+{b}/{t}right),x(t+tau) $$ where $a, tau in (0,infty)$, $a<1/(taue)$, $b in {mathbb R}$ are constants can serve as a linear example. The existence of a pair of positive solutions asymptotically different for $ttoinfty$ is proved and their asymptotic behavior is investigated. The results are also illustrated by a nonlinear equation.
Název v anglickém jazyce
Two classes of asymptotically different positive solutions to advanced differential equations via two different fixed-point principles
Popis výsledku anglicky
The paper considers a system of advanced-type functional differential equations $$ dot{x}(t) = F(t,x^t) $$ where $F$ is a given functional, $x^t in C([0,r],{mathbb R}^n)$, $r>0$ and $x^t(theta)=x(t+theta)$, $theta in [0,r]$. Two different results on the existence of solutions, with coordinates bounded above and below by the coordinates of the given vector functions if $ttoinfty$, are proved using two different fixed-point principles. It is illustrated by examples that, applying both results simultaneously to the same equation yields two positive solutions asymptotically different for $ttoinfty$. The equation $$ dot{x}(t) = left(a+{b}/{t}right),x(t+tau) $$ where $a, tau in (0,infty)$, $a<1/(taue)$, $b in {mathbb R}$ are constants can serve as a linear example. The existence of a pair of positive solutions asymptotically different for $ttoinfty$ is proved and their asymptotic behavior is investigated. The results are also illustrated by a nonlinear equation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
1099-1476
Svazek periodika
40
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
1422-1437
Kód UT WoS článku
000397303100006
EID výsledku v databázi Scopus
2-s2.0-84994381519