Testing of features for fatigue detection in EOG
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU124169" target="_blank" >RIV/00216305:26220/17:PU124169 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14110/17:00097867
Výsledek na webu
<a href="http://content.iospress.com/journals/bio-medical-materials-and-engineering/28/4" target="_blank" >http://content.iospress.com/journals/bio-medical-materials-and-engineering/28/4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/BME-171683" target="_blank" >10.3233/BME-171683</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Testing of features for fatigue detection in EOG
Popis výsledku v původním jazyce
The article deals with the testing of features for fatigue detection in electrooculography (EOG) records. An optimal methodology for EOG signal acquisition is described; the Biopac data acquisition system was used. EOG signals were being recorded while 10 volunteers were watching prepared scenes. Three scenes were created for this purpose – a rotating ball, a video of driving a car, and a cross. Recorded EOG signals were processed and 20 features were extracted. The features involved blinks, slow eye movement (SEM), rapid eye movement (REM), eye instability, magnitude, and periodicity. These features were statistically tested and discussed in terms of fatigue detection ability. Some of the features were compared with published results. Finally, the best features – fatigue indicators – were selected.
Název v anglickém jazyce
Testing of features for fatigue detection in EOG
Popis výsledku anglicky
The article deals with the testing of features for fatigue detection in electrooculography (EOG) records. An optimal methodology for EOG signal acquisition is described; the Biopac data acquisition system was used. EOG signals were being recorded while 10 volunteers were watching prepared scenes. Three scenes were created for this purpose – a rotating ball, a video of driving a car, and a cross. Recorded EOG signals were processed and 20 features were extracted. The features involved blinks, slow eye movement (SEM), rapid eye movement (REM), eye instability, magnitude, and periodicity. These features were statistically tested and discussed in terms of fatigue detection ability. Some of the features were compared with published results. Finally, the best features – fatigue indicators – were selected.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP102%2F11%2F1068" target="_blank" >GAP102/11/1068: Nano-elektro-bio-nástroje pro biochemické a molekulárně-biologické studie eukaryotických buněk (NanoBioTECell)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BIO-MEDICAL MATERIALS AND ENGINEERING
ISSN
0959-2989
e-ISSN
1878-3619
Svazek periodika
28
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
379-392
Kód UT WoS článku
000408296300005
EID výsledku v databázi Scopus
2-s2.0-85028679226