Automatic identification of artifacts and unwanted physiologic signals in EEG and EOG during wakefulness
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00303256" target="_blank" >RIV/68407700:21230/17:00303256 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/17:00303256
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S174680941630132X" target="_blank" >http://www.sciencedirect.com/science/article/pii/S174680941630132X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bspc.2016.09.006" target="_blank" >10.1016/j.bspc.2016.09.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic identification of artifacts and unwanted physiologic signals in EEG and EOG during wakefulness
Popis výsledku v původním jazyce
A set of computationally inexpensive methods for reliable and robust detection of undesired signals in the EEG and EOG was designed, implemented, and tested. This strategy includes detection of eye blinking, eye movements, muscle activity, and flat lines in multichannel EEG and EOG data. The proposed methodology was verified on real awake data acquired in controlled conditions (44 recordings of total length 26.38 h) during Maintenance of Wakefulness Tests (MWT). The algorithms worked reliably (average precision was 0.992 ± 0.006, accuracy 0.988 ± 0.006, sensitivity 0.985 ± 0.009, and F1 score 0.988 ± 0.006) and fast (1 h of recording processed in 46.2 ± 5.3 s). We suggest testing this versatile and fast methodology on other type of EEG recordings with modification of threshold parameters if needed. This article reports data from a clinical trials no. NCT01433315 and NCT01580761.
Název v anglickém jazyce
Automatic identification of artifacts and unwanted physiologic signals in EEG and EOG during wakefulness
Popis výsledku anglicky
A set of computationally inexpensive methods for reliable and robust detection of undesired signals in the EEG and EOG was designed, implemented, and tested. This strategy includes detection of eye blinking, eye movements, muscle activity, and flat lines in multichannel EEG and EOG data. The proposed methodology was verified on real awake data acquired in controlled conditions (44 recordings of total length 26.38 h) during Maintenance of Wakefulness Tests (MWT). The algorithms worked reliably (average precision was 0.992 ± 0.006, accuracy 0.988 ± 0.006, sensitivity 0.985 ± 0.009, and F1 score 0.988 ± 0.006) and fast (1 h of recording processed in 46.2 ± 5.3 s). We suggest testing this versatile and fast methodology on other type of EEG recordings with modification of threshold parameters if needed. This article reports data from a clinical trials no. NCT01433315 and NCT01580761.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomedical Signal Processing and Control
ISSN
1746-8094
e-ISSN
1746-8108
Svazek periodika
31
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
381-390
Kód UT WoS článku
000386984300042
EID výsledku v databázi Scopus
2-s2.0-84987903150