New chaotic dynamical system with a conic-shaped equilibrium located on the plane structure
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU124733" target="_blank" >RIV/00216305:26220/17:PU124733 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2076-3417/7/10/976" target="_blank" >https://www.mdpi.com/2076-3417/7/10/976</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app7100976" target="_blank" >10.3390/app7100976</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New chaotic dynamical system with a conic-shaped equilibrium located on the plane structure
Popis výsledku v původním jazyce
This paper presents a new autonomous deterministic dynamical system with equilibrium degenerated into a plane-oriented hyperbolic geometrical structure. It is demonstrated via numerical analysis and laboratory experiments that the discovered system has both a structurally stable strange attractor and experimentally measurable chaotic behavior. It is shown that the evolution of complex dynamics can be associated with a single parameter of a mathematical model and, due to one-to-one correspondence, to a single circuit parameter. Two-dimensional high resolution plots of the largest Lyapunov exponent and basins of attraction expressed in terms of final state energy are calculated and put into the context of the discovered third-order mathematical model and real chaotic oscillator. Both voltage- and current-mode analog chaotic oscillators are presented and verified by visualization of the typical chaotic attractor in a different fashion.
Název v anglickém jazyce
New chaotic dynamical system with a conic-shaped equilibrium located on the plane structure
Popis výsledku anglicky
This paper presents a new autonomous deterministic dynamical system with equilibrium degenerated into a plane-oriented hyperbolic geometrical structure. It is demonstrated via numerical analysis and laboratory experiments that the discovered system has both a structurally stable strange attractor and experimentally measurable chaotic behavior. It is shown that the evolution of complex dynamics can be associated with a single parameter of a mathematical model and, due to one-to-one correspondence, to a single circuit parameter. Two-dimensional high resolution plots of the largest Lyapunov exponent and basins of attraction expressed in terms of final state energy are calculated and put into the context of the discovered third-order mathematical model and real chaotic oscillator. Both voltage- and current-mode analog chaotic oscillators are presented and verified by visualization of the typical chaotic attractor in a different fashion.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-22712S" target="_blank" >GA15-22712S: Chaotické chování subsystémů radiofrekvenčního kanálu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences - Basel
ISSN
2076-3417
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
976-988
Kód UT WoS článku
000414457800014
EID výsledku v databázi Scopus
2-s2.0-85029813338