Comparative Study of Distributed Estimation Precision by Average Consensus Weight Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU125891" target="_blank" >RIV/00216305:26220/17:PU125891 - isvavai.cz</a>
Výsledek na webu
<a href="https://jcomss.fesb.unist.hr/index.php/jcomss/article/view/405" target="_blank" >https://jcomss.fesb.unist.hr/index.php/jcomss/article/view/405</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24138/jcomss.v13i4.405" target="_blank" >10.24138/jcomss.v13i4.405</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparative Study of Distributed Estimation Precision by Average Consensus Weight Models
Popis výsledku v původním jazyce
Distributed algorithms for an aggregate function estimation are an important complement of many real-life applications based on wireless sensor networks. Achieving a high precision of an estimation in a shorter time can optimize the overall energy consumption. Therefore, the choice of a proper distributed algorithm is an important part of an application design. In this study, we focus our attention on the average consensus algorithm and evaluate six weight models appropriate for the implementation into real-life applications. Our aim is to find the most suitable model in terms of the estimation precision in various phases of the algorithm. We examine the deviation of the least precise estimate over iterations for a Gaussian, a Uniform and a Bernoulli distribution of the initial states in strongly and weakly connected networks with a randomly generated topology. We examine which model is the most and the least precise in various phases. Based on these findings, we determine the most suitable model for real-life applications.
Název v anglickém jazyce
Comparative Study of Distributed Estimation Precision by Average Consensus Weight Models
Popis výsledku anglicky
Distributed algorithms for an aggregate function estimation are an important complement of many real-life applications based on wireless sensor networks. Achieving a high precision of an estimation in a shorter time can optimize the overall energy consumption. Therefore, the choice of a proper distributed algorithm is an important part of an application design. In this study, we focus our attention on the average consensus algorithm and evaluate six weight models appropriate for the implementation into real-life applications. Our aim is to find the most suitable model in terms of the estimation precision in various phases of the algorithm. We examine the deviation of the least precise estimate over iterations for a Gaussian, a Uniform and a Bernoulli distribution of the initial states in strongly and weakly connected networks with a randomly generated topology. We examine which model is the most and the least precise in various phases. Based on these findings, we determine the most suitable model for real-life applications.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Communications Software and Systems
ISSN
1845-6421
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
HR - Chorvatská republika
Počet stran výsledku
13
Strana od-do
165-177
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85042519177