Engineering Smart Behavior in Evacuation Planning using Local Cooperative Path Finding Algorithms and Agent-based Simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F19%3A00333596" target="_blank" >RIV/68407700:21240/19:00333596 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.keod.ic3k.org/" target="_blank" >http://www.keod.ic3k.org/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Engineering Smart Behavior in Evacuation Planning using Local Cooperative Path Finding Algorithms and Agent-based Simulations
Popis výsledku v původním jazyce
This paper addresses evacuation problems from the perspective of cooperative path finding (CPF). The evacuation problem we call multi-agent evacuation(MAE) consists of an undirected graph and a set of agents.The task is to move agents from the endangered part of the graph into the safe part as quickly as possible.Although there exist centralized evacuation algorithms based on network flows that are optimal with respect to various objectives, such algorithms would hardly be applicable in practice since real agents will not be able to follow the centrally created plan. Therefore we designed a local evacuation planning algorithm called LC-MAE based on local CPF techniques. Agent-based simulations in multiple real-life scenarios show that LC-MAE produces solutions that are only worse than the optimum by a small factor. Moreover our approach led to important findings about how many agents need to behave rationally to increase the speed of evacuation.
Název v anglickém jazyce
Engineering Smart Behavior in Evacuation Planning using Local Cooperative Path Finding Algorithms and Agent-based Simulations
Popis výsledku anglicky
This paper addresses evacuation problems from the perspective of cooperative path finding (CPF). The evacuation problem we call multi-agent evacuation(MAE) consists of an undirected graph and a set of agents.The task is to move agents from the endangered part of the graph into the safe part as quickly as possible.Although there exist centralized evacuation algorithms based on network flows that are optimal with respect to various objectives, such algorithms would hardly be applicable in practice since real agents will not be able to follow the centrally created plan. Therefore we designed a local evacuation planning algorithm called LC-MAE based on local CPF techniques. Agent-based simulations in multiple real-life scenarios show that LC-MAE produces solutions that are only worse than the optimum by a small factor. Moreover our approach led to important findings about how many agents need to behave rationally to increase the speed of evacuation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-17966S" target="_blank" >GA19-17966S: intALG-MAPFg: Inteligentní algoritmy pro zobecněné varianty multi-agetního hledání cest</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 11th International Conference on Knowledge Engineering and Ontology Development
ISBN
978-989-758-382-7
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
137-142
Název nakladatele
SciTePress - Science and Technology Publications
Místo vydání
Porto
Místo konání akce
Vídeň
Datum konání akce
17. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—