Towards Smart Behavior of Agents in Evacuation Planning Based on Local Cooperative Path Finding
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F19%3A00348035" target="_blank" >RIV/68407700:21240/19:00348035 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-66196-0_14" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-66196-0_14</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards Smart Behavior of Agents in Evacuation Planning Based on Local Cooperative Path Finding
Popis výsledku v původním jazyce
We address engineering of smart behavior of agents in evacuation problems from the perspective of cooperative path finding (CPF) in this paper.We introduce an abstract version of evacuation problems we call multi-agent evacuation (MAE) that consists of an undirected graph representing the map of the environment and a set of agents moving in this graph. The task is to move agents from the endangered part of the graph into the safe part as quickly as possible. Although the abstract evacuation task can be solved using centralized algorithms based on network flows that are near-optimal with respect to various objectives, such algorithms would hardly be applicable in practice since real agents will not be able to follow the centrally created plan. Therefore we designed a decentralized evacuation planning algorithm called LC-MAE based on local rules derived from local cooperative path finding (CPF) algorithms. We compared LC-MAE with near-optimal centralized algorithm using agent-based simulations in multiple real-life scenarios. Our finding it that LC-MAE produces solutions that are only worse than the optimum by a small factor. Moreover our approach led to important observations about how many agents need to behave rationally to increase the speed of evacuation. A small fraction of rational agents can speed up the evacuation dramatically.
Název v anglickém jazyce
Towards Smart Behavior of Agents in Evacuation Planning Based on Local Cooperative Path Finding
Popis výsledku anglicky
We address engineering of smart behavior of agents in evacuation problems from the perspective of cooperative path finding (CPF) in this paper.We introduce an abstract version of evacuation problems we call multi-agent evacuation (MAE) that consists of an undirected graph representing the map of the environment and a set of agents moving in this graph. The task is to move agents from the endangered part of the graph into the safe part as quickly as possible. Although the abstract evacuation task can be solved using centralized algorithms based on network flows that are near-optimal with respect to various objectives, such algorithms would hardly be applicable in practice since real agents will not be able to follow the centrally created plan. Therefore we designed a decentralized evacuation planning algorithm called LC-MAE based on local rules derived from local cooperative path finding (CPF) algorithms. We compared LC-MAE with near-optimal centralized algorithm using agent-based simulations in multiple real-life scenarios. Our finding it that LC-MAE produces solutions that are only worse than the optimum by a small factor. Moreover our approach led to important observations about how many agents need to behave rationally to increase the speed of evacuation. A small fraction of rational agents can speed up the evacuation dramatically.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-17966S" target="_blank" >GA19-17966S: intALG-MAPFg: Inteligentní algoritmy pro zobecněné varianty multi-agetního hledání cest</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Knowledge Discovery, Knowledge Engineering and Knowledge Management - 11th International Joint Conference (IC3K/KEOD 2020), Revised Selected Papers
ISBN
978-3-030-66195-3
ISSN
—
e-ISSN
—
Počet stran výsledku
20
Strana od-do
302-321
Název nakladatele
Springer-Verlag
Místo vydání
Berlin
Místo konání akce
Vídeň
Datum konání akce
17. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—