Wavelet Co-movement Significance Testing with Respect to Gaussian White Noise Background
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU124855" target="_blank" >RIV/00216305:26220/18:PU124855 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.itm-conferences.org/articles/itmconf/abs/2018/01/contents/contents.html" target="_blank" >https://www.itm-conferences.org/articles/itmconf/abs/2018/01/contents/contents.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/itmconf/20181601002" target="_blank" >10.1051/itmconf/20181601002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wavelet Co-movement Significance Testing with Respect to Gaussian White Noise Background
Popis výsledku v původním jazyce
The paper deals with significance testing of time series co-movement measured via time-frequency approach. We use the wavelet analysis for estimation of the co/cross-spectra for the co-movement analysis. This technique is very popular in the most of economic applications for its better time resolution compare to other techniques. Such approach put in evidence the existence of both long-run and short-run co-movement. In order to have better predictive power it is suitable to support and validate obtained results via some testing approach. We investigate the test of wavelet power co/cross-spectrum with respect to the Gaussian white noise background with the use of the Bessel function. Our experiment is performed on synthetic signal and real data. We use seasonally adjusted quarterly data of gross domestic product of the United Kingdom, Korea and G7 countries. To validate the test results we perform Monte Carlo simulation. We describe the advantages and disadvantages of both approaches and formulate recommendations for using time-frequency testing for wavelet co/cross-spectra.
Název v anglickém jazyce
Wavelet Co-movement Significance Testing with Respect to Gaussian White Noise Background
Popis výsledku anglicky
The paper deals with significance testing of time series co-movement measured via time-frequency approach. We use the wavelet analysis for estimation of the co/cross-spectra for the co-movement analysis. This technique is very popular in the most of economic applications for its better time resolution compare to other techniques. Such approach put in evidence the existence of both long-run and short-run co-movement. In order to have better predictive power it is suitable to support and validate obtained results via some testing approach. We investigate the test of wavelet power co/cross-spectrum with respect to the Gaussian white noise background with the use of the Bessel function. Our experiment is performed on synthetic signal and real data. We use seasonally adjusted quarterly data of gross domestic product of the United Kingdom, Korea and G7 countries. To validate the test results we perform Monte Carlo simulation. We describe the advantages and disadvantages of both approaches and formulate recommendations for using time-frequency testing for wavelet co/cross-spectra.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ITM Web of Conferences
ISBN
—
ISSN
2271-2097
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
Helenic Military Academy
Místo vydání
Athens, Greece
Místo konání akce
Atény
Datum konání akce
6. 10. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—