Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Segmentation Based Testing of Co-movement Significance

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU129588" target="_blank" >RIV/00216305:26220/18:PU129588 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8422048" target="_blank" >https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8422048</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IWSSIP.2018.8439304" target="_blank" >10.1109/IWSSIP.2018.8439304</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Segmentation Based Testing of Co-movement Significance

  • Popis výsledku v původním jazyce

    The paper is focused on the significance testing of the time-frequency co-movement measure on the segmentation bases. Investigating the test of the power wavelet cross-spectrum we have some standard assumptions: i.e two independent Gaussian white noise inputs. Then, with the use of the Bessel function, we can test whether the values of power wavelet cross-spectrum are significant with respect to the variance of each input time series. Our paper investigate the case when an input data have heteroscedastic character. Thus we propose firstly segmentation of the data sample according to the variances of input time series. Secondly, we propose an identification significant power wavelet cross-spectrum values in each segment via Ge test. The results with and without segmentation are compared. Our experiment is performed on simulated and real data. The results shows, that segmentation based testing for the heteroscedastic data provides more precise results.

  • Název v anglickém jazyce

    Segmentation Based Testing of Co-movement Significance

  • Popis výsledku anglicky

    The paper is focused on the significance testing of the time-frequency co-movement measure on the segmentation bases. Investigating the test of the power wavelet cross-spectrum we have some standard assumptions: i.e two independent Gaussian white noise inputs. Then, with the use of the Bessel function, we can test whether the values of power wavelet cross-spectrum are significant with respect to the variance of each input time series. Our paper investigate the case when an input data have heteroscedastic character. Thus we propose firstly segmentation of the data sample according to the variances of input time series. Secondly, we propose an identification significant power wavelet cross-spectrum values in each segment via Ge test. The results with and without segmentation are compared. Our experiment is performed on simulated and real data. The results shows, that segmentation based testing for the heteroscedastic data provides more precise results.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 25th International Conference on Systems, Signals and Image Processing

  • ISBN

    978-1-5386-6979-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    1-5

  • Název nakladatele

    Neuveden

  • Místo vydání

    Maribor

  • Místo konání akce

    Maribor

  • Datum konání akce

    20. 6. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000451277200015