Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparison of Mathematical and Controlled Mechanical Lung Simulation in Active Breathing and Ventilated State

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU127859" target="_blank" >RIV/00216305:26220/18:PU127859 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.ifacol.2018.07.127" target="_blank" >http://dx.doi.org/10.1016/j.ifacol.2018.07.127</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ifacol.2018.07.127" target="_blank" >10.1016/j.ifacol.2018.07.127</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparison of Mathematical and Controlled Mechanical Lung Simulation in Active Breathing and Ventilated State

  • Popis výsledku v původním jazyce

    Respiratory diseases are ubiquitous among European citizens and their prevalence is increasing steadily. Deeper insight into the respiratory process can be gained by modelling of the region of interest in the human body. The presented lung simulator xPULM bridges the gap between in-silico (mathematical), in-vivo (cell culture based) and mechanical models of the respiratory tract. By adopting selected mathematical models of the human respiratory tract two scenarios were simulated. The linear mathematical single compartment model was used for simulation of the human breathing pattern at rest. Higher complexity non-linear mathematical model reflecting diverse nature of the human respiratory tract was used as a basis for simulation of an artificially ventilated patient. The time-flow characteristics of the mathematical models have been implemented into the control software of the mechanical lung simulator - xPULM. The simulator was then configured to replicate these required breathing patterns employing feedback control loop. The airflow was measured over the course of breathing simulation. The results show high conformity of required and measured breathing patterns characteristic with steady frequency rate and minimal airflow variability. Furthermore, xPULM was capable of reproducing rapid changes of airflow occurring during simulation of artificially ventilated patient, showing high versatility and adaptability of the simulator. Future research will focus on reduction of flow fluctuations and implementation of new breathing patterns. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

  • Název v anglickém jazyce

    Comparison of Mathematical and Controlled Mechanical Lung Simulation in Active Breathing and Ventilated State

  • Popis výsledku anglicky

    Respiratory diseases are ubiquitous among European citizens and their prevalence is increasing steadily. Deeper insight into the respiratory process can be gained by modelling of the region of interest in the human body. The presented lung simulator xPULM bridges the gap between in-silico (mathematical), in-vivo (cell culture based) and mechanical models of the respiratory tract. By adopting selected mathematical models of the human respiratory tract two scenarios were simulated. The linear mathematical single compartment model was used for simulation of the human breathing pattern at rest. Higher complexity non-linear mathematical model reflecting diverse nature of the human respiratory tract was used as a basis for simulation of an artificially ventilated patient. The time-flow characteristics of the mathematical models have been implemented into the control software of the mechanical lung simulator - xPULM. The simulator was then configured to replicate these required breathing patterns employing feedback control loop. The airflow was measured over the course of breathing simulation. The results show high conformity of required and measured breathing patterns characteristic with steady frequency rate and minimal airflow variability. Furthermore, xPULM was capable of reproducing rapid changes of airflow occurring during simulation of artificially ventilated patient, showing high versatility and adaptability of the simulator. Future research will focus on reduction of flow fluctuations and implementation of new breathing patterns. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20602 - Medical laboratory technology (including laboratory samples analysis; diagnostic technologies) (Biomaterials to be 2.9 [physical characteristics of living material as related to medical implants, devices, sensors])

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 15th IFAC Conference on Programmable Devices and Embedded Systems PDeS 2018

  • ISBN

  • ISSN

    2405-8963

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    42-47

  • Název nakladatele

    Neuveden

  • Místo vydání

    neuveden

  • Místo konání akce

    Ostrava

  • Datum konání akce

    23. 5. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000445644900008