Comparison of Mathematical and Controlled Mechanical Lung Simulation in Active Breathing and Ventilated State
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU127859" target="_blank" >RIV/00216305:26220/18:PU127859 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ifacol.2018.07.127" target="_blank" >http://dx.doi.org/10.1016/j.ifacol.2018.07.127</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2018.07.127" target="_blank" >10.1016/j.ifacol.2018.07.127</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of Mathematical and Controlled Mechanical Lung Simulation in Active Breathing and Ventilated State
Popis výsledku v původním jazyce
Respiratory diseases are ubiquitous among European citizens and their prevalence is increasing steadily. Deeper insight into the respiratory process can be gained by modelling of the region of interest in the human body. The presented lung simulator xPULM bridges the gap between in-silico (mathematical), in-vivo (cell culture based) and mechanical models of the respiratory tract. By adopting selected mathematical models of the human respiratory tract two scenarios were simulated. The linear mathematical single compartment model was used for simulation of the human breathing pattern at rest. Higher complexity non-linear mathematical model reflecting diverse nature of the human respiratory tract was used as a basis for simulation of an artificially ventilated patient. The time-flow characteristics of the mathematical models have been implemented into the control software of the mechanical lung simulator - xPULM. The simulator was then configured to replicate these required breathing patterns employing feedback control loop. The airflow was measured over the course of breathing simulation. The results show high conformity of required and measured breathing patterns characteristic with steady frequency rate and minimal airflow variability. Furthermore, xPULM was capable of reproducing rapid changes of airflow occurring during simulation of artificially ventilated patient, showing high versatility and adaptability of the simulator. Future research will focus on reduction of flow fluctuations and implementation of new breathing patterns. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Comparison of Mathematical and Controlled Mechanical Lung Simulation in Active Breathing and Ventilated State
Popis výsledku anglicky
Respiratory diseases are ubiquitous among European citizens and their prevalence is increasing steadily. Deeper insight into the respiratory process can be gained by modelling of the region of interest in the human body. The presented lung simulator xPULM bridges the gap between in-silico (mathematical), in-vivo (cell culture based) and mechanical models of the respiratory tract. By adopting selected mathematical models of the human respiratory tract two scenarios were simulated. The linear mathematical single compartment model was used for simulation of the human breathing pattern at rest. Higher complexity non-linear mathematical model reflecting diverse nature of the human respiratory tract was used as a basis for simulation of an artificially ventilated patient. The time-flow characteristics of the mathematical models have been implemented into the control software of the mechanical lung simulator - xPULM. The simulator was then configured to replicate these required breathing patterns employing feedback control loop. The airflow was measured over the course of breathing simulation. The results show high conformity of required and measured breathing patterns characteristic with steady frequency rate and minimal airflow variability. Furthermore, xPULM was capable of reproducing rapid changes of airflow occurring during simulation of artificially ventilated patient, showing high versatility and adaptability of the simulator. Future research will focus on reduction of flow fluctuations and implementation of new breathing patterns. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20602 - Medical laboratory technology (including laboratory samples analysis; diagnostic technologies) (Biomaterials to be 2.9 [physical characteristics of living material as related to medical implants, devices, sensors])
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 15th IFAC Conference on Programmable Devices and Embedded Systems PDeS 2018
ISBN
—
ISSN
2405-8963
e-ISSN
—
Počet stran výsledku
6
Strana od-do
42-47
Název nakladatele
Neuveden
Místo vydání
neuveden
Místo konání akce
Ostrava
Datum konání akce
23. 5. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000445644900008