Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Electro-mechanical Lung Simulator Using Polymer and Organic Human Lung Equivalents for Realistic Breathing Simulation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU135472" target="_blank" >RIV/00216305:26220/19:PU135472 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.nature.com/articles/s41598-019-56176-6#article-info" target="_blank" >https://www.nature.com/articles/s41598-019-56176-6#article-info</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-019-56176-6" target="_blank" >10.1038/s41598-019-56176-6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Electro-mechanical Lung Simulator Using Polymer and Organic Human Lung Equivalents for Realistic Breathing Simulation

  • Popis výsledku v původním jazyce

    Simulation models in respiratory research are increasingly used for medical product development and testing, especially because in-vivo models are coupled with a high degree of complexity and ethical concerns. This work introduces a respiratory simulation system, which is bridging the gap between the complex, real anatomical environment and the safe, cost-effective simulation methods. The presented electro-mechanical lung simulator, xPULM, combines in-silico, ex-vivo and mechanical respiratory approaches by realistically replicating an actively breathing human lung. The reproducibility of sinusoidal breathing simulations with xPULM was verified for selected breathing frequencies (10-18 bpm) and tidal volumes (400-600 ml) physiologically occurring during human breathing at rest. Human lung anatomy was modelled using latex bags and primed porcine lungs. High reproducibility of flow and pressure characteristics was shown by evaluating breathing cycles (n(Total) = 3273) with highest standard deviation vertical bar 3 sigma vertical bar for both, simplified lung equivalents (mu(V) = 23.98 +/- 1.04 l/min, mu(P) = -0.78 +/- 0.63 hPa) and primed porcine lungs (mu(V) = 18.87 +/- 2.49 l/min, mu(P) = -21.13 +/- 1.47 hPa). The adaptability of the breathing simulation parameters, coupled with the use of porcine lungs salvaged from a slaughterhouse process, represents an advancement towards anatomically and physiologically realistic modelling of human respiration.

  • Název v anglickém jazyce

    Electro-mechanical Lung Simulator Using Polymer and Organic Human Lung Equivalents for Realistic Breathing Simulation

  • Popis výsledku anglicky

    Simulation models in respiratory research are increasingly used for medical product development and testing, especially because in-vivo models are coupled with a high degree of complexity and ethical concerns. This work introduces a respiratory simulation system, which is bridging the gap between the complex, real anatomical environment and the safe, cost-effective simulation methods. The presented electro-mechanical lung simulator, xPULM, combines in-silico, ex-vivo and mechanical respiratory approaches by realistically replicating an actively breathing human lung. The reproducibility of sinusoidal breathing simulations with xPULM was verified for selected breathing frequencies (10-18 bpm) and tidal volumes (400-600 ml) physiologically occurring during human breathing at rest. Human lung anatomy was modelled using latex bags and primed porcine lungs. High reproducibility of flow and pressure characteristics was shown by evaluating breathing cycles (n(Total) = 3273) with highest standard deviation vertical bar 3 sigma vertical bar for both, simplified lung equivalents (mu(V) = 23.98 +/- 1.04 l/min, mu(P) = -0.78 +/- 0.63 hPa) and primed porcine lungs (mu(V) = 18.87 +/- 2.49 l/min, mu(P) = -21.13 +/- 1.47 hPa). The adaptability of the breathing simulation parameters, coupled with the use of porcine lungs salvaged from a slaughterhouse process, represents an advancement towards anatomically and physiologically realistic modelling of human respiration.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10700 - Other natural sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Kód UT WoS článku

    000508915900008

  • EID výsledku v databázi Scopus