Infrared image segmentation using growing immune field and clone threshold
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU128279" target="_blank" >RIV/00216305:26220/18:PU128279 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.infrared.2017.11.029" target="_blank" >http://dx.doi.org/10.1016/j.infrared.2017.11.029</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.infrared.2017.11.029" target="_blank" >10.1016/j.infrared.2017.11.029</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Infrared image segmentation using growing immune field and clone threshold
Popis výsledku v původním jazyce
Fast and accurate segmentation of infrared target is the basis of automatic target recognition, but there is a problem that it is easy to appear the significant differences of target areas in segmentation. In order to solve this problem, in this paper a new method based on growing immune field and clone threshold for segmentation of infrared targets is introduced. First, according to the global gray information, obtain the best threshold of the image using the clonal selection algorithm for global threshold segmentation. And the seed region is selected based on global threshold segmentation. Second, the source seeds are obtained by comparing the similarity threshold with seed region. Third, the growing immune field is adjusted automatically for region growing through the source seeds. Finally, the segmented image is obtained by immune region growing. The simulation results show that the target information gained by the proposed method is complete and exact. This resultgreatly facilitates the target recognition.
Název v anglickém jazyce
Infrared image segmentation using growing immune field and clone threshold
Popis výsledku anglicky
Fast and accurate segmentation of infrared target is the basis of automatic target recognition, but there is a problem that it is easy to appear the significant differences of target areas in segmentation. In order to solve this problem, in this paper a new method based on growing immune field and clone threshold for segmentation of infrared targets is introduced. First, according to the global gray information, obtain the best threshold of the image using the clonal selection algorithm for global threshold segmentation. And the seed region is selected based on global threshold segmentation. Second, the source seeds are obtained by comparing the similarity threshold with seed region. Third, the growing immune field is adjusted automatically for region growing through the source seeds. Finally, the segmented image is obtained by immune region growing. The simulation results show that the target information gained by the proposed method is complete and exact. This resultgreatly facilitates the target recognition.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INFRARED PHYSICS & TECHNOLOGY
ISSN
1350-4495
e-ISSN
1879-0275
Svazek periodika
88
Číslo periodika v rámci svazku
2018
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
184-193
Kód UT WoS článku
000423650700025
EID výsledku v databázi Scopus
—