Blurred Infrared Image Segmentation Using New Immune Algorithm with Minimum Mean Distance Immune Field
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU129526" target="_blank" >RIV/00216305:26220/18:PU129526 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3964/j.issn.1000-0593(2018)11-3645-08" target="_blank" >http://dx.doi.org/10.3964/j.issn.1000-0593(2018)11-3645-08</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3964/j.issn.1000-0593(2018)11-3645-08" target="_blank" >10.3964/j.issn.1000-0593(2018)11-3645-08</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Blurred Infrared Image Segmentation Using New Immune Algorithm with Minimum Mean Distance Immune Field
Popis výsledku v původním jazyce
Criminals use various methods to avoid traditional forensic image technologies, so infrared image is becoming an effective means for obtaining crime scene traces. However, segmentation targets from infrared image shoot in crime scene is a challenging task as these images are target weakened infrared images. Previous studies about immune algorithms do not describe immune variation and immune recognition distance in the net-work and algorithm. In opposition to segment these target weakened traces infrared images, we propose a new immune framework with immune variation and minimum mean immune recognition distance, and construct a new immune segmentation algorithm with minimum mean distance immune field. According to the distinguishing feature of infrared images, this method use multi-step classification algorithm, immune variation and adaptive immune minimum mean distance recognition to achieve optimal classification based on the overall statistical properties of target areas and background areas. Experimental results show that the proposed immune algorithm with minimum mean distance can segment target weakened infrared images efficiently. Compared with classical edge template and conventional region template methods, the proposed algorithm has better segmentation results, especially the boundaries of five fingers.
Název v anglickém jazyce
Blurred Infrared Image Segmentation Using New Immune Algorithm with Minimum Mean Distance Immune Field
Popis výsledku anglicky
Criminals use various methods to avoid traditional forensic image technologies, so infrared image is becoming an effective means for obtaining crime scene traces. However, segmentation targets from infrared image shoot in crime scene is a challenging task as these images are target weakened infrared images. Previous studies about immune algorithms do not describe immune variation and immune recognition distance in the net-work and algorithm. In opposition to segment these target weakened traces infrared images, we propose a new immune framework with immune variation and minimum mean immune recognition distance, and construct a new immune segmentation algorithm with minimum mean distance immune field. According to the distinguishing feature of infrared images, this method use multi-step classification algorithm, immune variation and adaptive immune minimum mean distance recognition to achieve optimal classification based on the overall statistical properties of target areas and background areas. Experimental results show that the proposed immune algorithm with minimum mean distance can segment target weakened infrared images efficiently. Compared with classical edge template and conventional region template methods, the proposed algorithm has better segmentation results, especially the boundaries of five fingers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SPECTROSCOPY AND SPECTRAL ANALYSIS
ISSN
1000-0593
e-ISSN
—
Svazek periodika
38
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
5
Strana od-do
1-5
Kód UT WoS článku
000452247200052
EID výsledku v databázi Scopus
—