An Imaging Method for Automated SkinLesion Segmentation using Statistical Analysis and Bit Plane Slicing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU129294" target="_blank" >RIV/00216305:26220/18:PU129294 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/CIACT.2018.8480175" target="_blank" >http://dx.doi.org/10.1109/CIACT.2018.8480175</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CIACT.2018.8480175" target="_blank" >10.1109/CIACT.2018.8480175</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Imaging Method for Automated SkinLesion Segmentation using Statistical Analysis and Bit Plane Slicing
Popis výsledku v původním jazyce
Melanoma can prove fatal if not diagnosed at early stage. Computer aided identification of diseases can equip normal people in performing a screening test of diseases. The accurate lesion segmentation plays a crucial role in correct diagnosis of skin diseases. This work proposes a skin lesion segmentation method using statistical analysis and bit plane slicing. Hole filling operation is competent enough to sufficiently reject the noisy pixels from the finally segmented image. The results of skin lesion segmentation obtained from the proposed algorithm has been compared with the annotated images available with the database. The results arepresented in form of overlapping score and correlation coefficient. An average overlapping score and correlation coefficient of 91.59% and 92.07%, respectively, is obtained from the proposed algorithm. Also, an image based performance analysis of segmented lesion has been done and an average sensitivity of 94.33% has been achieved. The results are convincing and suggests that the proposed work can be used for some real-time application.
Název v anglickém jazyce
An Imaging Method for Automated SkinLesion Segmentation using Statistical Analysis and Bit Plane Slicing
Popis výsledku anglicky
Melanoma can prove fatal if not diagnosed at early stage. Computer aided identification of diseases can equip normal people in performing a screening test of diseases. The accurate lesion segmentation plays a crucial role in correct diagnosis of skin diseases. This work proposes a skin lesion segmentation method using statistical analysis and bit plane slicing. Hole filling operation is competent enough to sufficiently reject the noisy pixels from the finally segmented image. The results of skin lesion segmentation obtained from the proposed algorithm has been compared with the annotated images available with the database. The results arepresented in form of overlapping score and correlation coefficient. An average overlapping score and correlation coefficient of 91.59% and 92.07%, respectively, is obtained from the proposed algorithm. Also, an image based performance analysis of segmented lesion has been done and an average sensitivity of 94.33% has been achieved. The results are convincing and suggests that the proposed work can be used for some real-time application.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on "Computational Intelligence and Communication Technology"
ISBN
978-1-5386-0886-9
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
IEEE
Místo vydání
GHAZIABAD, India
Místo konání akce
GHAZIABAD
Datum konání akce
9. 2. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000450112300015