Minimal realizations of autonomous chaotic oscillators based on trans-immittance filters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU131191" target="_blank" >RIV/00216305:26220/19:PU131191 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8630955" target="_blank" >https://ieeexplore.ieee.org/document/8630955</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2019.2896656" target="_blank" >10.1109/ACCESS.2019.2896656</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Minimal realizations of autonomous chaotic oscillators based on trans-immittance filters
Popis výsledku v původním jazyce
This review paper describes a design process toward fully analog realizations of chaotic dynamics that can be considered canonical (minimum number of the circuit elements), robust (exhibit structurally stable strange attractors), and novel. Each autonomous chaotic lumped circuit proposed in this paper can be understood as a looped system, where linear trans-immittance frequency lter interacts with an active nonlinear two-port. The existence of chaos is demonstrated via well-established numerical algorithms that represent the current standard in the eld of nonlinear dynamics, i.e., by calculation of the largest Lyapunov exponent and high-resolution 1-D bifurcation diagrams. The achieved numerical results are put into the context of experimental measurement; observed state trajectories prove a one-to-one correspondence between theoretical expectations and practical outputs, i.e., prescribed strange attractors do not represent the chaotic transients. Finally, short term unpredictability of the chaotic ow is demonstrated via calculation of KaplanYorke dimension that is high, i.e., generated waveforms can nd interesting applications in the elds of chaotic masking, modulation, or chaos-based cryptography.
Název v anglickém jazyce
Minimal realizations of autonomous chaotic oscillators based on trans-immittance filters
Popis výsledku anglicky
This review paper describes a design process toward fully analog realizations of chaotic dynamics that can be considered canonical (minimum number of the circuit elements), robust (exhibit structurally stable strange attractors), and novel. Each autonomous chaotic lumped circuit proposed in this paper can be understood as a looped system, where linear trans-immittance frequency lter interacts with an active nonlinear two-port. The existence of chaos is demonstrated via well-established numerical algorithms that represent the current standard in the eld of nonlinear dynamics, i.e., by calculation of the largest Lyapunov exponent and high-resolution 1-D bifurcation diagrams. The achieved numerical results are put into the context of experimental measurement; observed state trajectories prove a one-to-one correspondence between theoretical expectations and practical outputs, i.e., prescribed strange attractors do not represent the chaotic transients. Finally, short term unpredictability of the chaotic ow is demonstrated via calculation of KaplanYorke dimension that is high, i.e., generated waveforms can nd interesting applications in the elds of chaotic masking, modulation, or chaos-based cryptography.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1401" target="_blank" >LO1401: Interdisciplinární výzkum bezdrátových technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
17561-17577
Kód UT WoS článku
000459416800001
EID výsledku v databázi Scopus
2-s2.0-85061752554