Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparing assignment-based approaches to breed identification within a large set of horses

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU131995" target="_blank" >RIV/00216305:26220/19:PU131995 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43210/19:43915581

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s13353-019-00495-x" target="_blank" >https://link.springer.com/article/10.1007/s13353-019-00495-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13353-019-00495-x" target="_blank" >10.1007/s13353-019-00495-x</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparing assignment-based approaches to breed identification within a large set of horses

  • Popis výsledku v původním jazyce

    Considering the extensive data sets and statistical techniques, animal breeding embodies a branch of machine learning that has a constantly increasing impact on breeding. In our study, information regarding the potential of machine learning and data mining within a large set of horses and breeds is presented. The individual assignment methods and factors influencing the success rate of the procedure are compared at the Czech population scale. The fixation index values ranged from 0.057 (HMS1) to 0.144 (HTG6), and the overall genetic differentiation amounted to 8.9% among the breeds. The highest genetic divergence (FST = 0.378) was established between the Friesian and Equus przewalskii; the highest degree of gene migration was obtained between the Czech and Bavarian Warmblood (Nm = 14,302); and the overall global heterozygote deficit across the populations was 10.4%. The eight standard methods (Bayesian, frequency, and distance) using GeneClass software and almost all mainstream classification algorithms (Bayes Net, Naive Bayes, IB1, IB5, KStar, JRip, J48, Random Forest, Random Tree, PART, MLP, and SVM) from the WEKA machine learning workbench were compared by utilizing 314,874 real allelic data sets. The Bayesian method (GeneClass, 89.9%) and Bayesian network algorithm (WEKA, 84.8%) outperformed the other techniques. The breed genomic prediction accuracy reached the highest value in the cold-blooded horses. The overall proportion of individuals correctly assigned to a population depended mainly on the breed number and genetic divergence. These statistical tools could be used to assess breed traceability systems, and they exhibit the potential to assist managers in decision-making as regards breeding and registration.

  • Název v anglickém jazyce

    Comparing assignment-based approaches to breed identification within a large set of horses

  • Popis výsledku anglicky

    Considering the extensive data sets and statistical techniques, animal breeding embodies a branch of machine learning that has a constantly increasing impact on breeding. In our study, information regarding the potential of machine learning and data mining within a large set of horses and breeds is presented. The individual assignment methods and factors influencing the success rate of the procedure are compared at the Czech population scale. The fixation index values ranged from 0.057 (HMS1) to 0.144 (HTG6), and the overall genetic differentiation amounted to 8.9% among the breeds. The highest genetic divergence (FST = 0.378) was established between the Friesian and Equus przewalskii; the highest degree of gene migration was obtained between the Czech and Bavarian Warmblood (Nm = 14,302); and the overall global heterozygote deficit across the populations was 10.4%. The eight standard methods (Bayesian, frequency, and distance) using GeneClass software and almost all mainstream classification algorithms (Bayes Net, Naive Bayes, IB1, IB5, KStar, JRip, J48, Random Forest, Random Tree, PART, MLP, and SVM) from the WEKA machine learning workbench were compared by utilizing 314,874 real allelic data sets. The Bayesian method (GeneClass, 89.9%) and Bayesian network algorithm (WEKA, 84.8%) outperformed the other techniques. The breed genomic prediction accuracy reached the highest value in the cold-blooded horses. The overall proportion of individuals correctly assigned to a population depended mainly on the breed number and genetic divergence. These statistical tools could be used to assess breed traceability systems, and they exhibit the potential to assist managers in decision-making as regards breeding and registration.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10603 - Genetics and heredity (medical genetics to be 3)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF APPLIED GENETICS

  • ISSN

    1234-1983

  • e-ISSN

    2190-3883

  • Svazek periodika

    60

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    PL - Polská republika

  • Počet stran výsledku

    12

  • Strana od-do

    187-198

  • Kód UT WoS článku

    000465998700008

  • EID výsledku v databázi Scopus