Early Detection of Heart Valve Disease Employing Multiclass Classifier
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU134093" target="_blank" >RIV/00216305:26220/19:PU134093 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8970870" target="_blank" >https://ieeexplore.ieee.org/document/8970870</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICUMT48472.2019.8970870" target="_blank" >10.1109/ICUMT48472.2019.8970870</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Early Detection of Heart Valve Disease Employing Multiclass Classifier
Popis výsledku v původním jazyce
Cardiac disorder can prove to be fatal for a person’s life. Therefore, these disorders must be detected precisely in the preliminary stages. By the use of cardiac auscultation examination, one can examine the heart sounds. Cardiovascular auscultation is the most widely used technique to listen and analyze the cardiac sound in the form of phonocardiogram using an electronic stethoscope. Useful information can be derived from the PCG signal to derive the accurate functioning and status of the heart. Based on information derived, the heart sound signal can be classified into multiple categories. This method proposes an automatic, real-time and modified classification over previous methods to detect cardiac disorder by PCG heart sound signal and was tested over a database containing 5 categories of heart sound signal (PCG signals) which contains signals of one normal and 4 are abnormal categories. The method achieved an accuracy of 97.50 % during the classification process. Features are extracted from the phonocardiogram signal and then those signals are processed using machine learning classification techniques. The experimental observations suggest that the proposed model is efficient for classification of the multi-class heart sounds.
Název v anglickém jazyce
Early Detection of Heart Valve Disease Employing Multiclass Classifier
Popis výsledku anglicky
Cardiac disorder can prove to be fatal for a person’s life. Therefore, these disorders must be detected precisely in the preliminary stages. By the use of cardiac auscultation examination, one can examine the heart sounds. Cardiovascular auscultation is the most widely used technique to listen and analyze the cardiac sound in the form of phonocardiogram using an electronic stethoscope. Useful information can be derived from the PCG signal to derive the accurate functioning and status of the heart. Based on information derived, the heart sound signal can be classified into multiple categories. This method proposes an automatic, real-time and modified classification over previous methods to detect cardiac disorder by PCG heart sound signal and was tested over a database containing 5 categories of heart sound signal (PCG signals) which contains signals of one normal and 4 are abnormal categories. The method achieved an accuracy of 97.50 % during the classification process. Features are extracted from the phonocardiogram signal and then those signals are processed using machine learning classification techniques. The experimental observations suggest that the proposed model is efficient for classification of the multi-class heart sounds.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)
ISBN
978-1-7281-5764-1
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
Neuveden
Místo vydání
Dublin, Ireland
Místo konání akce
Dublin
Datum konání akce
28. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000540651700041