Cardi-Net: A Deep Neural Network for classification of Cardiac disease using Phonocardiogram Signal
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU143882" target="_blank" >RIV/00216305:26220/20:PU143882 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0169260720315832" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0169260720315832</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cmpb.2022.106727" target="_blank" >10.1016/j.cmpb.2022.106727</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cardi-Net: A Deep Neural Network for classification of Cardiac disease using Phonocardiogram Signal
Popis výsledku v původním jazyce
Background and objectives The lack of medical facilities in isolated areas makes many patients remain aloof from quick and timely diagnosis of cardiovascular diseases, leading to high mortality rates. A deep learning based method for automatic diagnosis of multiple cardiac diseases from Phonocardiogram (PCG) signals is proposed in this paper. Methods The proposed system is a combination of deep learning based convolutional neural network (CNN) and power spectrogram Cardi-Net, which can extract deep discriminating features of PCG signals from the power spectrogram to identify the diseases. The choice of Power Spectral Density (PSD) makes the model extract highly discriminatory features significant for the multi-classification of four common cardiac disorders. Results Data augmentation techniques are applied to make the model robust, and the model undergoes 10-fold cross-validation to yield an overall accuracy of 98.879% on the test dataset to diagnose multi heart diseases from PCG signals. Conclusion The proposed model is completely automatic, where signal pre-processing and feature engineering are not required. The conversion time of power spectrogram from PCG signals is very low range from 0.10 sec to 0.11 sec. This reduces the complexity of the model, making it highly reliable and robust for real-time applications. The proposed architecture can be deployed on cloud and a low cost processor, desktop, android app leading to proper access to the dispensaries in remote areas.
Název v anglickém jazyce
Cardi-Net: A Deep Neural Network for classification of Cardiac disease using Phonocardiogram Signal
Popis výsledku anglicky
Background and objectives The lack of medical facilities in isolated areas makes many patients remain aloof from quick and timely diagnosis of cardiovascular diseases, leading to high mortality rates. A deep learning based method for automatic diagnosis of multiple cardiac diseases from Phonocardiogram (PCG) signals is proposed in this paper. Methods The proposed system is a combination of deep learning based convolutional neural network (CNN) and power spectrogram Cardi-Net, which can extract deep discriminating features of PCG signals from the power spectrogram to identify the diseases. The choice of Power Spectral Density (PSD) makes the model extract highly discriminatory features significant for the multi-classification of four common cardiac disorders. Results Data augmentation techniques are applied to make the model robust, and the model undergoes 10-fold cross-validation to yield an overall accuracy of 98.879% on the test dataset to diagnose multi heart diseases from PCG signals. Conclusion The proposed model is completely automatic, where signal pre-processing and feature engineering are not required. The conversion time of power spectrogram from PCG signals is very low range from 0.10 sec to 0.11 sec. This reduces the complexity of the model, making it highly reliable and robust for real-time applications. The proposed architecture can be deployed on cloud and a low cost processor, desktop, android app leading to proper access to the dispensaries in remote areas.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE
ISSN
0169-2607
e-ISSN
1872-7565
Svazek periodika
219
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
000778631600004
EID výsledku v databázi Scopus
2-s2.0-85126586158