Graph convolutional neural networks for sentiment analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU136947" target="_blank" >RIV/00216305:26220/20:PU136947 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph convolutional neural networks for sentiment analysis
Popis výsledku v původním jazyce
Commonly used approaches based on deep learning for sentiment analysis task operating over data in Euclidean space. In contrast with them, this paper presents, a novel approach for sentiment analysis task based on a graph convolutional neural networks (GCNs) operating with data in Non-Euclidean space. Text data processed by the approach have to be converted to a graph structure. Our GCNs models have been trained on 25 000 data samples and evaluated 5 000 samples. The Yelp data set has been used. The experiment is focused on polarity sentiment analysis task. Nevertheless, a relatively small training data set has been used, our best model achieved 86.12% accuracy.
Název v anglickém jazyce
Graph convolutional neural networks for sentiment analysis
Popis výsledku anglicky
Commonly used approaches based on deep learning for sentiment analysis task operating over data in Euclidean space. In contrast with them, this paper presents, a novel approach for sentiment analysis task based on a graph convolutional neural networks (GCNs) operating with data in Non-Euclidean space. Text data processed by the approach have to be converted to a graph structure. Our GCNs models have been trained on 25 000 data samples and evaluated 5 000 samples. The Yelp data set has been used. The experiment is focused on polarity sentiment analysis task. Nevertheless, a relatively small training data set has been used, our best model achieved 86.12% accuracy.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings I of the 26th Conference STUDENT EEICT 2020
ISBN
978-80-214-5867-3
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
340-344
Název nakladatele
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Místo vydání
Brno
Místo konání akce
BRNO
Datum konání akce
23. 4. 2020
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—