Comparing Normalization Methods for Limited Batch Size Segmentation Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137022" target="_blank" >RIV/00216305:26220/20:PU137022 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9163397" target="_blank" >https://ieeexplore.ieee.org/document/9163397</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP49548.2020.9163397" target="_blank" >10.1109/TSP49548.2020.9163397</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparing Normalization Methods for Limited Batch Size Segmentation Neural Networks
Popis výsledku v původním jazyce
The widespread use of Batch Normalization has enabled training deeper neural networks with more stable and faster results. However, the Batch Normalization works best using large batch size during training and as the state-of-theart segmentation convolutional neural network architectures are very memory demanding, large batch size is often impossible to achieve on current hardware. We evaluate the alternative normalization methods proposed to solve this issue on a problem of binary spine segmentation from 3D CT scan. Our results show the effectiveness of Instance Normalization in the limited batch size neural network training environment. Out of all the compared methods the Instance Normalization achieved the highest result with Dice coefficient = 0.96 which is comparable to our previous results achieved by deeper network with longer training time. We also show that the Instance Normalization implementation used in this experiment is computational timeefficient when compared to the network without any normalization method.
Název v anglickém jazyce
Comparing Normalization Methods for Limited Batch Size Segmentation Neural Networks
Popis výsledku anglicky
The widespread use of Batch Normalization has enabled training deeper neural networks with more stable and faster results. However, the Batch Normalization works best using large batch size during training and as the state-of-theart segmentation convolutional neural network architectures are very memory demanding, large batch size is often impossible to achieve on current hardware. We evaluate the alternative normalization methods proposed to solve this issue on a problem of binary spine segmentation from 3D CT scan. Our results show the effectiveness of Instance Normalization in the limited batch size neural network training environment. Out of all the compared methods the Instance Normalization achieved the highest result with Dice coefficient = 0.96 which is comparable to our previous results achieved by deeper network with longer training time. We also show that the Instance Normalization implementation used in this experiment is computational timeefficient when compared to the network without any normalization method.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 43rd International Conference on Telecommunications and Signal Processing (TSP)
ISBN
978-1-7281-6376-5
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
677-680
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Milan, Italy
Datum konání akce
7. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—