Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparing Normalization Methods for Limited Batch Size Segmentation Neural Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137022" target="_blank" >RIV/00216305:26220/20:PU137022 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9163397" target="_blank" >https://ieeexplore.ieee.org/document/9163397</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TSP49548.2020.9163397" target="_blank" >10.1109/TSP49548.2020.9163397</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparing Normalization Methods for Limited Batch Size Segmentation Neural Networks

  • Popis výsledku v původním jazyce

    The widespread use of Batch Normalization has enabled training deeper neural networks with more stable and faster results. However, the Batch Normalization works best using large batch size during training and as the state-of-theart segmentation convolutional neural network architectures are very memory demanding, large batch size is often impossible to achieve on current hardware. We evaluate the alternative normalization methods proposed to solve this issue on a problem of binary spine segmentation from 3D CT scan. Our results show the effectiveness of Instance Normalization in the limited batch size neural network training environment. Out of all the compared methods the Instance Normalization achieved the highest result with Dice coefficient = 0.96 which is comparable to our previous results achieved by deeper network with longer training time. We also show that the Instance Normalization implementation used in this experiment is computational timeefficient when compared to the network without any normalization method.

  • Název v anglickém jazyce

    Comparing Normalization Methods for Limited Batch Size Segmentation Neural Networks

  • Popis výsledku anglicky

    The widespread use of Batch Normalization has enabled training deeper neural networks with more stable and faster results. However, the Batch Normalization works best using large batch size during training and as the state-of-theart segmentation convolutional neural network architectures are very memory demanding, large batch size is often impossible to achieve on current hardware. We evaluate the alternative normalization methods proposed to solve this issue on a problem of binary spine segmentation from 3D CT scan. Our results show the effectiveness of Instance Normalization in the limited batch size neural network training environment. Out of all the compared methods the Instance Normalization achieved the highest result with Dice coefficient = 0.96 which is comparable to our previous results achieved by deeper network with longer training time. We also show that the Instance Normalization implementation used in this experiment is computational timeefficient when compared to the network without any normalization method.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2020 43rd International Conference on Telecommunications and Signal Processing (TSP)

  • ISBN

    978-1-7281-6376-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    677-680

  • Název nakladatele

    Neuveden

  • Místo vydání

    Neuveden

  • Místo konání akce

    Milan, Italy

  • Datum konání akce

    7. 7. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku