Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Simulating UAV's Movement for Servicing User Groups with a Reference Point in Wireless Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137105" target="_blank" >RIV/00216305:26220/20:PU137105 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-65729-1_37" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-65729-1_37</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-65729-1_37" target="_blank" >10.1007/978-3-030-65729-1_37</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Simulating UAV's Movement for Servicing User Groups with a Reference Point in Wireless Networks

  • Popis výsledku v původním jazyce

    Current cellular networks face outbreaks of an extremely high demand for communication capacity and coverage during the mass events. This article discusses a scenario with events in remote areas. It is expected that the unmanned aerial vehicles (UAVs) equipped with the directional antennas will become one of the key components of these networks and provide the solution. It attracts considerable attention in basic and applied research and commerce for its rapid deployment and exible extension of the users coverage, mobility of UAV access points (APs) and a higher probability of line-of-sight channels. However, it also creates new issues to be addressed. The critical task is to maximize coverage area with the required quality of service to provide the connection for the maximum number of users. At the same time, analysis of the performance indicators of such networks, taking into account the mobility of both access points and users, is challenging. One of the key quality indicators is the probability of coverage. The aim of this work is to consider two drones' mobility models to cover users with small cells, and to solve the problem of maximizing coverage probability using the simulation. With a given threshold signal-to-noise ratio, it is shown that using the particle swarm method as an adaptive navigation algorithm allows achieving higher coverage probability values as opposed to k-means algorithm. A comparative analysis of adaptive navigation is presented.

  • Název v anglickém jazyce

    Simulating UAV's Movement for Servicing User Groups with a Reference Point in Wireless Networks

  • Popis výsledku anglicky

    Current cellular networks face outbreaks of an extremely high demand for communication capacity and coverage during the mass events. This article discusses a scenario with events in remote areas. It is expected that the unmanned aerial vehicles (UAVs) equipped with the directional antennas will become one of the key components of these networks and provide the solution. It attracts considerable attention in basic and applied research and commerce for its rapid deployment and exible extension of the users coverage, mobility of UAV access points (APs) and a higher probability of line-of-sight channels. However, it also creates new issues to be addressed. The critical task is to maximize coverage area with the required quality of service to provide the connection for the maximum number of users. At the same time, analysis of the performance indicators of such networks, taking into account the mobility of both access points and users, is challenging. One of the key quality indicators is the probability of coverage. The aim of this work is to consider two drones' mobility models to cover users with small cells, and to solve the problem of maximizing coverage probability using the simulation. With a given threshold signal-to-noise ratio, it is shown that using the particle swarm method as an adaptive navigation algorithm allows achieving higher coverage probability values as opposed to k-means algorithm. A comparative analysis of adaptive navigation is presented.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20202 - Communication engineering and systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Internet of Things, Smart Spaces, and Next Generation Networks and Systems

  • ISBN

    978-3-030-65729-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    415-425

  • Název nakladatele

    Springer, Cham

  • Místo vydání

    Neuveden

  • Místo konání akce

    St. Petersburg

  • Datum konání akce

    26. 8. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku