Machine Learning Based Automatic Classification of Respiratory Signals using Wavelet Transform
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137725" target="_blank" >RIV/00216305:26220/20:PU137725 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9163565" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9163565</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP49548.2020.9163565" target="_blank" >10.1109/TSP49548.2020.9163565</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning Based Automatic Classification of Respiratory Signals using Wavelet Transform
Popis výsledku v původním jazyce
Respiratory signals emanating from human lungs give vital and indicative information regarding the health status of a patient’s lungs. Conventional clinical methods require professional pulmonologists to diagnose such signals properly and are also time consuming. In this proposed work, an efficient and automated method is proposed for the diagnosis and classification of respiratory signals into normal and abnormal respiratory sound. Respiratory signal is cleaned using a band pass filter, followed by features extraction in wavelet domain. Discriminatory features from the filtered signals are fed to SVM for purpose of classification of signals. Proposed methodology has achieved an accuracy of 92.30% in correctly classifying the pathological lung sounds. Outcomes of the proposed algorithm are promising and indicates its usability for some real time application.
Název v anglickém jazyce
Machine Learning Based Automatic Classification of Respiratory Signals using Wavelet Transform
Popis výsledku anglicky
Respiratory signals emanating from human lungs give vital and indicative information regarding the health status of a patient’s lungs. Conventional clinical methods require professional pulmonologists to diagnose such signals properly and are also time consuming. In this proposed work, an efficient and automated method is proposed for the diagnosis and classification of respiratory signals into normal and abnormal respiratory sound. Respiratory signal is cleaned using a band pass filter, followed by features extraction in wavelet domain. Discriminatory features from the filtered signals are fed to SVM for purpose of classification of signals. Proposed methodology has achieved an accuracy of 92.30% in correctly classifying the pathological lung sounds. Outcomes of the proposed algorithm are promising and indicates its usability for some real time application.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
43rd International Conference on Telecommunications and Signal Processing
ISBN
978-1-7281-6377-2
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
545-549
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Milan, Italy
Datum konání akce
7. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000577106400117