Cardiac Pathologies Detection and Classification in 12-lead ECG
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137840" target="_blank" >RIV/00216305:26220/20:PU137840 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.cinc.org/archives/2020/pdf/CinC2020-171.pdf" target="_blank" >http://www.cinc.org/archives/2020/pdf/CinC2020-171.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22489/CinC.2020.171" target="_blank" >10.22489/CinC.2020.171</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cardiac Pathologies Detection and Classification in 12-lead ECG
Popis výsledku v původním jazyce
Background: Automatic detection and classification of cardiac abnormalities in ECG is one of the basic and often solved problems. The aim of this paper is to present a proposed algorithm for ECG classification into 19 classes. This algorithm was created within PhysioNet/CinC Challenge 2020, name of our team was HITTING. Methods: Our algorithm detects each pathology separately according to the extracted features and created rules. Signals from the 6 databases were used. Detector of QRS complexes, T-waves and P-waves including detection of their boundaries was designed. Then, the most common morphology of the QRS was found in each record. All these QRS were averaged. Features were extracted from the averaged QRS and from intervals between detected points. Appropriate features and rules were set using classification trees. Results: Our approach achieved a challenge validation score of 0.435, and full test score of 0.354, placing us 11 out of 41 in the official ranking. Conclusion: The advantage of our algorithm is easy interpretation. It is obvious according to which features algorithm decided and what thresholds were set.
Název v anglickém jazyce
Cardiac Pathologies Detection and Classification in 12-lead ECG
Popis výsledku anglicky
Background: Automatic detection and classification of cardiac abnormalities in ECG is one of the basic and often solved problems. The aim of this paper is to present a proposed algorithm for ECG classification into 19 classes. This algorithm was created within PhysioNet/CinC Challenge 2020, name of our team was HITTING. Methods: Our algorithm detects each pathology separately according to the extracted features and created rules. Signals from the 6 databases were used. Detector of QRS complexes, T-waves and P-waves including detection of their boundaries was designed. Then, the most common morphology of the QRS was found in each record. All these QRS were averaged. Features were extracted from the averaged QRS and from intervals between detected points. Appropriate features and rules were set using classification trees. Results: Our approach achieved a challenge validation score of 0.435, and full test score of 0.354, placing us 11 out of 41 in the official ranking. Conclusion: The advantage of our algorithm is easy interpretation. It is obvious according to which features algorithm decided and what thresholds were set.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computing in Cardiology 2020
ISBN
—
ISSN
2325-887X
e-ISSN
—
Počet stran výsledku
4
Strana od-do
1-4
Název nakladatele
IEEE
Místo vydání
Rimini, Italy
Místo konání akce
Rimini
Datum konání akce
13. 9. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—